首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1905篇
  免费   175篇
  国内免费   3篇
  2022年   12篇
  2021年   25篇
  2020年   8篇
  2019年   12篇
  2018年   32篇
  2017年   26篇
  2016年   52篇
  2015年   80篇
  2014年   77篇
  2013年   96篇
  2012年   143篇
  2011年   114篇
  2010年   91篇
  2009年   81篇
  2008年   135篇
  2007年   117篇
  2006年   125篇
  2005年   116篇
  2004年   115篇
  2003年   106篇
  2002年   85篇
  2001年   42篇
  2000年   15篇
  1999年   32篇
  1998年   26篇
  1997年   22篇
  1996年   20篇
  1995年   18篇
  1994年   22篇
  1993年   19篇
  1992年   18篇
  1991年   15篇
  1990年   12篇
  1989年   9篇
  1988年   12篇
  1987年   18篇
  1986年   15篇
  1985年   16篇
  1984年   7篇
  1983年   7篇
  1982年   12篇
  1981年   7篇
  1980年   4篇
  1979年   4篇
  1978年   10篇
  1977年   7篇
  1976年   11篇
  1974年   6篇
  1972年   8篇
  1968年   4篇
排序方式: 共有2083条查询结果,搜索用时 812 毫秒
131.
Caulobacter crescentus is an oligotrophic bacterium that lives in dilute organic environments such as soil and freshwater. This bacterium represents an interesting model for cellular differentiation and regulation because daughter cells after division have different forms: one is motile while the other is non-motile and can adhere to surfaces. Interestingly, the known genome of C. crescentus does not contain genes predicted to code for outer membrane porins of the OmpF/C general diffusion type present in enteric bacteria or those coding for specific porins selective for classes of substrates. Instead, genes coding for 67 TonB-dependent outer membrane receptors have been identified, suggesting that active transport of specific nutrients may be the norm. Here, we report that high channel-forming activity was observed with crude outer membrane extracts of C. crescentus in lipid bilayer experiments, indicating that the outer membrane of C. crescentus contained an ion-permeable channel with a single-channel conductance of about 120 pS in 1M KCl. The channel-forming protein with an apparent molecular mass of about 20 kDa was purified to homogeneity. Partial protein sequencing of the protein indicated it was a member of the OmpW family of outer membrane proteins from Gram-negative bacteria. This channel was not observed in reconstitution experiments with crude outer membrane extracts of an OmpW deficient C. crescentus mutant. Biophysical analysis of the C. crescentus OmpW suggested that it has features that are special for general diffusion porins of Gram-negative outer membranes because it was not a wide aqueous channel. Furthermore, OmpW of C. crescentus seems to be different to known OmpW porins and has a preference for ions, in particular cations. A putative model for OmpW of C. crescentus was built on the basis of the known 3D-structures of OmpW of Escherichia coli and OprG of Pseudomonas aeruginosa using homology modeling. A comparison of the two known structures with the model of OmpW of C. crescentus suggested that it has a more hydrophilic interior and possibly a larger diameter.  相似文献   
132.
An analysis of cardiorespiratory dynamics during mental arithmetic, which induces stress, and sustained attention was conducted using information theory. The information storage and internal information of heart rate variability (HRV) were determined respectively as the self-entropy of the tachogram, and the self-entropy of the tachogram conditioned to the knowledge of respiration. The information transfer and cross information from respiration to HRV were assessed as the transfer and cross-entropy, both measures of cardiorespiratory coupling. These information-theoretic measures identified significant nonlinearities in the cardiorespiratory time series. Additionally, it was shown that, although mental stress is related to a reduction in vagal activity, no difference in cardiorespiratory coupling was found when several mental states (rest, mental stress, sustained attention) are compared. However, the self-entropy of HRV conditioned to respiration was very informative to study the predictability of RR interval series during mental tasks, and showed higher predictability during mental arithmetic compared to sustained attention or rest.  相似文献   
133.
134.
Soft tissue sarcomas are a heterogeneous group of tumors with many different subtypes. In 2014 an estimated 12,020 newly diagnosed cases and 4,740 soft tissue sarcoma related deaths can be expected in the United States. Many soft tissue sarcomas are associated with poor prognosis and therapeutic options are often limited. The evolution of precision medicine has not yet fully reached the clinical treatment of sarcomas since therapeutically tractable genetic changes have not been comprehensively studied so far. We analyzed a total of 484 adult-type malignant mesenchymal tumors by MET fluorescence in situ hybridization and MET and hepatocyte growth factor immunohistochemistry. Eleven different entities were included, among them the most common and clinically relevant subtypes and tumors with specific translocations or complex genetic changes. MET protein expression was observed in 2.6% of the cases, all of which were either undifferentiated pleomorphic sarcomas or angiosarcomas, showing positivity rates of 14% and 17%, respectively. 6% of the tumors showed hepatocyte growth factor overexpression, mainly seen in undifferentiated pleomorphic sarcomas and angiosarcomas, but also in clear cell sarcomas, malignant peripheral nerve sheath tumors, leiomyosarcomas and gastrointestinal stromal tumors. MET and hepatocyte growth factor overexpression were significantly correlated and may suggest an autocrine activation in these tumors. MET FISH amplification and copy number gain were present in 4% of the tumors (15/413). Two samples, both undifferentiated pleomorphic sarcomas, fulfilled the criteria for high level amplification of MET, one undifferentiated pleomorphic sarcoma reached an intermediate level copy number gain, and 12 samples of different subtypes were categorized as low level copy number gains for MET. Our findings indicate that angiosarcomas and undifferentiated pleomorphic sarcomas rather than other frequent adult-type sarcomas should be enrolled in screening programs for clinical trials with MET inhibitors. The screening methods should include both in situ hybridization and immunohistochemistry.  相似文献   
135.
Honey bee pathology: current threats to honey bees and beekeeping   总被引:1,自引:0,他引:1  
Managed honey bees are the most important commercial pollinators of those crops which depend on animal pollination for reproduction and which account for 35% of the global food production. Hence, they are vital for an economic, sustainable agriculture and for food security. In addition, honey bees also pollinate a variety of wild flowers and, therefore, contribute to the biodiversity of many ecosystems. Honey and other hive products are, at least economically and ecologically rather, by-products of beekeeping. Due to this outstanding role of honey bees, severe and inexplicable honey bee colony losses, which have been reported recently to be steadily increasing, have attracted much attention and stimulated many research activities. Although the phenomenon “decline of honey bees” is far from being finally solved, consensus exists that pests and pathogens are the single most important cause of otherwise inexplicable colony losses. This review will focus on selected bee pathogens and parasites which have been demonstrated to be involved in colony losses in different regions of the world and which, therefore, are considered current threats to honey bees and beekeeping.  相似文献   
136.
In order to design potential biomaterials, we investigated the laccase-catalyzed cross-linking between l-lysine or lysine-containing peptides and dihydroxylated aromatics. l-Lysine is one of the major components of naturally occurring mussel adhesive proteins (MAPs). Dihydroxylated aromatics are structurally related to 3,4-dihydroxyphenyl-l-alanine, another main component of MAPs. Mass spectrometry and nuclear magnetic resonance analyses show that the ε-amino group of l-lysine is able to cross-link dihydroxylated aromatics. Additional oligomer and polymer cross-linked products were obtained from di- and oligopeptides containing l-lysine. Potential applications in medicine or industry for biomaterials synthesised via the three component system consisting of the oligopeptide [Tyr-Lys]10, dihydroxylated aromatics and laccase are discussed.  相似文献   
137.
138.
Numerous studies have shown that green tea polyphenols can be degraded in the colon, and there is abundant knowledge about the metabolites of these substances that appear in urine and plasma after green tea ingestion. However, there is very little information on the extent and nature of intestinal degradation of green tea catechins in humans. Therefore, the aim of this study was to examine in detail the microbial metabolism and chemical stability of these polyphenols in the small intestine using a well-established ex vivo model. For this purpose, fresh ileostomy fluids from two probands were incubated for 24 h under anaerobic conditions with (+)-catechin (C), (-)-epicatechin (EC), (-)-epicatechin 3-O-gallate (ECG), (-)-epigallocatechin (EGC), (-)-epigallocatchin 3-O-gallate (EGCG) and gallic acid (GA). After lyophilisation and extraction, metabolites were separated, identified and quantified by high performance liquid chromatography-photodiode array detection (HPLC-DAD) and HPLC-ESI-tandem mass spectrometry. Two metabolites of EC and C (3', 4', 5'-trihydroxyphenyl-γ-valerolactone and 3', 4'-dihydroxyphenyl-γ-valerolactone) were identified. In addition, 3', 4', 5'-trihydroxyphenyl-γ-valerolactone was detected as a metabolite of EGC, and (after 24-h incubation) pyrogallol as a degradation product of GA. Cleavage of the GA esters of EGCG and ECG was also observed, with variations dependent on the sources (probands) of the ileal fluids, which differed substantially microbiotically. The results provide new information about the degradation of green tea catechins in the gastrointestinal tract, notably that microbiota-dependent liberation of GA esters may occur before these compounds reach the colon.  相似文献   
139.

Background

Glycerol is the major by-product accounting for up to 5% of the carbon in Saccharomyces cerevisiae ethanolic fermentation. Decreasing glycerol formation may redirect part of the carbon toward ethanol production. However, abolishment of glycerol formation strongly affects yeast's robustness towards different types of stress occurring in an industrial process. In order to assess whether glycerol production can be reduced to a certain extent without jeopardising growth and stress tolerance, the yeast's capacity to synthesize glycerol was adjusted by fine-tuning the activity of the rate-controlling enzyme glycerol 3-phosphate dehydrogenase (GPDH). Two engineered strains whose specific GPDH activity was significantly reduced by two different degrees were comprehensively characterized in a previously developed Very High Ethanol Performance (VHEP) fed-batch process.

Results

The prototrophic strain CEN.PK113-7D was chosen for decreasing glycerol formation capacity. The fine-tuned reduction of specific GPDH activity was achieved by replacing the native GPD1 promoter in the yeast genome by previously generated well-characterized TEF promoter mutant versions in a gpd2 Δ background. Two TEF promoter mutant versions were selected for this study, resulting in a residual GPDH activity of 55 and 6%, respectively. The corresponding strains were referred to here as TEFmut7 and TEFmut2. The genetic modifications were accompanied to a strong reduction in glycerol yield on glucose; the level of reduction compared to the wild-type was 61% in TEFmut7 and 88% in TEFmut2. The overall ethanol production yield on glucose was improved from 0.43 g g-1 in the wild type to 0.44 g g-1 measured in TEFmut7 and 0.45 g g-1 in TEFmut2. Although maximal growth rate in the engineered strains was reduced by 20 and 30%, for TEFmut7 and TEFmut2 respectively, strains' ethanol stress robustness was hardly affected; i.e. values for final ethanol concentration (117 ± 4 g L-1), growth-inhibiting ethanol concentration (87 ± 3 g L-1) and volumetric ethanol productivity (2.1 ± 0.15 g l-1 h-1) measured in wild-type remained virtually unchanged in the engineered strains.

Conclusions

This work demonstrates the power of fine-tuned pathway engineering, particularly when a compromise has to be found between high product yield on one hand and acceptable growth, productivity and stress resistance on the other hand. Under the conditions used in this study (VHEP fed-batch), the two strains with "fine-tuned" GPD1 expression in a gpd2 Δ background showed slightly better ethanol yield improvement than previously achieved with the single deletion strains gpd1 Δ or gpd2 Δ. Although glycerol reduction is known to be even higher in a gpd1 Δ gpd2 Δ double deletion strain, our strains could much better cope with process stress as reflected by better growth and viability.  相似文献   
140.
The vacuolating toxin VacA, released by Helicobacter pylori, is an important virulence factor in the pathogenesis of gastritis and gastroduodenal ulcers. VacA contains two subunits: The p58 subunit mediates entry into target cells, and the p34 subunit mediates targeting to mitochondria and is essential for toxicity. In this study we found that targeting to mitochondria is dependent on a unique signal sequence of 32 uncharged amino acid residues at the p34 N-terminus. Mitochondrial import of p34 is mediated by the import receptor Tom20 and the import channel of the outer membrane TOM complex, leading to insertion of p34 into the mitochondrial inner membrane. p34 assembles in homo-hexamers of extraordinary high stability. CD spectra of the purified protein indicate a content of >40% β-strands, similar to pore-forming β-barrel proteins. p34 forms an anion channel with a conductivity of about 12 pS in 1.5 M KCl buffer. Oligomerization and channel formation are independent both of the 32 uncharged N-terminal residues and of the p58 subunit of the toxin. The conductivity is efficiently blocked by 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), a reagent known to inhibit VacA-mediated apoptosis. We conclude that p34 essentially acts as a small pore-forming toxin, targeted to the mitochondrial inner membrane by a special hydrophobic N-terminal signal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号