首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15102篇
  免费   1472篇
  国内免费   5篇
  2023年   50篇
  2022年   198篇
  2021年   356篇
  2020年   196篇
  2019年   248篇
  2018年   311篇
  2017年   257篇
  2016年   448篇
  2015年   770篇
  2014年   793篇
  2013年   902篇
  2012年   1214篇
  2011年   1174篇
  2010年   722篇
  2009年   632篇
  2008年   895篇
  2007年   875篇
  2006年   853篇
  2005年   765篇
  2004年   719篇
  2003年   704篇
  2002年   609篇
  2001年   137篇
  2000年   87篇
  1999年   151篇
  1998年   207篇
  1997年   121篇
  1996年   121篇
  1995年   115篇
  1994年   102篇
  1993年   121篇
  1992年   110篇
  1991年   80篇
  1990年   84篇
  1989年   73篇
  1988年   79篇
  1987年   61篇
  1986年   61篇
  1985年   60篇
  1984年   66篇
  1983年   80篇
  1982年   68篇
  1981年   66篇
  1980年   67篇
  1979年   48篇
  1978年   46篇
  1977年   45篇
  1976年   47篇
  1975年   44篇
  1974年   60篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
151.
A 15-17 nucleotide sequence from the gag-pol ribosome frameshift site of HIV-1 directs analogous ribosomal frameshifting in Escherichia coli. Limitation for leucine, which is encoded precisely at the frameshift site, dramatically increased the frequency of leftward frameshifting. Limitation for phenylaianine or arginine, which are encoded just before and just after the frameshift, did not significantly affect frameshifting. Protein sequence analysis demonstrated the occurrence of two closeiy related frameshift mechanisms. In the first, ribosomes appear to bind leucyl-tRNA at the frameshift site and then slip leftward. This is the 'simultaneous slippage’mechanism. In the second, ribosomes appear to slip before binding amlnoacyl-tRNA, and then bind phenylaianyl-tRNA, which is encoded in the left-shifted reading frame. This mechanism is identicai to the‘overlapping reading’we have demonstrated at other bacterial frameshift sites. The HIV-1 sequence is prone to frame-shifting by both mechanisms in E. coli.  相似文献   
152.
153.
Summary The respiratory deficient dum-1 mutant of Chlamydomonas reinhardtii fails to grow in the dark because of a terminal 1.5 kb deletion in the linear 15.8 kb mitochondrial genome, which affects the apocytochrome b (CYB) gene. In contrast to the wild type where only mitochondrial genomes of monomer length are observed, the dum-1 genomes are present as a mixture of monomer and dimer length molecules. The mutant dimers appear to result from head-to-head fusions of two deleted molecules. Furthermore, mitochondrial genomes of dum-1 were also found to be unstable, with the extent of the deletion varying among single cell clones from the original mutant population. The dum-1 mutant also segregates, at a frequency of ca. 4% per generation, lethal minute colonies in which the original deletion now extends at least into the adjacent gene encoding subunit four of NAD dehydrogenase (ND4). We have used the dum-1 mutant as a recipient to demonstrate stable mitochondrial transformation in C. reinhardtii employing the biolistic method. After 4 to 8 weeks dark incubation, a total of 22 respiratory competent colonies were isolated from plates of dum-1 cells bombarded with C. reinhardtii mitochondrial DNA (frequency 7.3 × 10–7) and a single colony was isolated from plates bombarded with C. smithii mitochondrial DNA (frequency 0.8 × 10–7). No colonies were seen on control plates (frequency < 0.96 × 10–9). All transformants grew normally in the dark on acetate media; 22 transformants were homoplasmic for the wild-type mitochondrial genome typical of the C. reinhardtii donor. The single transformant obtained from the C. smithii donor had a recombinant mitochondrial genome containing the donor CYB gene and the diagnostic HpaI and XbaI restriction sites in the gene encoding subunit I of cytochrome oxidase (COI) from the C. reinhardtii recipient. The characteristic deletion fragments of the dum-1 recipient were not detected in any of the transformants.  相似文献   
154.
The flowering response of axillary buds of seedlings of Pharbitis nil Choisy, cv. Violet, was examined in relation to the timing of apical bud removal (plumule including the first leaf or second leaf) before or after a flower-inductive 16-h dark period. When the apical bud was removed well before the dark period, flower buds formed on the axillary shoots that subsequently developed, but when removed just before, or after, the dark period, different results were observed depending on the timing of the apical bud removal and plant age. In the case of 8-day-old seedlings, fewer flower buds formed on the axillary shoots developing from the cotyledonary node when plumules were removed 20 to 0 h before the dark period. When the apical bud was removed after the dark period, no flower buds formed. Using 14-day-old seedlings a similar reduction of flowering response was observed on the axillary shoots developing from the first leaf node when the apical bud was removed just after the dark period. To further elucidate the relationship between apical dominance and flowering, kinetin or IAA was applied to axillary buds or the cut site where the apical bud was located. Both chemicals influenced flowering, probably by modulating apical dominance which normally forces axillary buds to be dormant.  相似文献   
155.
The light-dependent regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity was studied in 16 species of C4 plants representing all three biochemical subtypes and a variety of taxonomic groups. Rubisco regulation was assessed by measuring (a) the ratio of initial to total Rubisco activity, which reflects primarily the carbamylation state of the enzyme, and (b) total Rubisco activity per mol of Rubisco catalytic sites, which declines when 2-carboxyarabinitol 1-phosphate (CA1P) binds to carbamylated Rubisco. In all species examined, the activity ratio of Rubisco declined with a reduction in light intensity, although substantial variation was apparent between species in the degree of Rubisco deactivation. No relationship existed between the degree of Rubisco deactivation and C4 subtype. Dicots generally deactivated Rubisco to a greater degree than monocots. The total activity of Rubisco per catalytic site was generally independent of light intensity, indicating that CA1P and other inhibitors are not major contributors to the light-dependent regulation of Rubisco activity in C4 plants. The light response of the activity ratio of Rubisco was measured in detail in Amaranthus retroflexus, Brachiaria texana, and Zea mays. In A. retroflexus and B. texana, the activity ratio declined dramatically below a light intensity of 400 to 500 [mu]mol of photons m-2 s-1. In Z. mays, the activity ratio of Rubisco was relatively insensitive to light intensity compared with the other species. In A. retroflexus, the pool size of ribulose bisphosphate (RuBP) declined with reduced light intensity except between 50 and 500 [mu]mol m-2 s-1, when the activity ratio of Rubisco was light dependent. In Z. mays, by contrast, the pool size of RuBP was light dependent only below 350 [mu]mol m-2 s-1. These results indicate that, in response to changes in light intensity, most C4 species regulate Rubisco by reversible carbamylation of catalytic sites, as commonly observed in C3 plants. In a few species, notably Z. mays, Rubisco is not extensively regulated in response to changes in light intensity, possibly because the activity of the CO2 pump may become limiting for photosynthesis at subsaturating light intensity.  相似文献   
156.
Age-Dependent Impairment of Mitochondrial Function in Primate Brain   总被引:11,自引:2,他引:9  
Abstract: It has been hypothesized that some of the functional impairments associated with aging are the result of increasing oxidative damage to mitochondrial DNA that produces defects in oxidative phosphorylation. To test this hypothesis, we examined the enzymes that catalyze oxidative phosphorylation in crude mitochondrial preparations from frontoparietal cortex of 20 rhesus monkeys (5-34 years old). Samples were assayed for complex I, complex II-III, complex IV, complex V, and citrate synthase activities. When enzyme activities were corrected for citrate synthase activities (to account for variable degrees of mitochondrial enrichment), linear regression analysis demonstrated a significant negative correlation of the activities of complex I (p < 0.002) and complex IV (p < 0.03) with age but no significant change in complex II-III or complex V activities. Relative to animals 6.9 ± 0.9 years old (n = 7), the citrate synthase-corrected activity of complex I was reduced by 17% in animals 22.5 ± 0.9 years old (n = 6) (p < 0.05) and by 22% in animals 30.7 ± 0.9 years old (n = 7) (p < 0.01). Similar age-related reductions in the activities of complexes I and IV were obtained when enzyme activities were corrected for complex II-III activity. These findings show an age-associated progressive impairment of mitochondrial complex I and complex IV activities in cerebral cortices of primates.  相似文献   
157.
Abstract: The phosphorylation of surface proteins by ectoprotein kinase has been proposed to play a role in mechanisms underlying neuronal differentiation and their responsiveness to nerve growth factor (NGF). PC 12 clones represent an optimal model for investigating the mode of action of NGF in a homogeneous cell population. In the present study we obtained evidence that PC12 cells possess ectoprotein kinase and characterized the endogenous phosphorylation of its surface protein substrates. PC12 cells maintained in a chemically defined medium exhibited phosphorylation of proteins by [γ-32P]ATP added to the medium at time points preceding the intracellular phosphorylation of proteins in cells labeled with 32Pi. This activity was abolished by adding apyrase or trypsin to the medium but was not sensitive to addition of an excess of unlabeled Pi. As also expected from ecto-protein kinase activity, PC12 cells catalyzed the phosphorylation of an exogenous protein substrate added to the medium, dephospho-α-casein, and this activity competed with the endogenous phosphorylation for extracellular ATP. Based on these criteria, three protein components migrating in sodium dodecyl sulfate gels with apparent molecular weights of 105K, 39K, and 20K were identified as exclusive substrates of ecto-protein kinase in PC12 cells. Of the phosphate incorporated into these proteins from extracellular ATP, 75–87% was found in phosphothreonine. The phosphorylation of the 39K protein by ecto-protein kinase did not require Mg2+, implicating this activity in the previously demonstrated regulation of Ca2+-dependent, high-affinity norepinephrine uptake in PC12 cells by extracellular ATP. The protein kinase inhibitor K-252a inhibited both intra- and extracellular protein phosphorylation in intact PC12 cells. Its hydrophilic analogue K-252b, had only minimal effects on intracellular protein phosphorylation but readily inhibited the phosphorylation of specific substrates of ecto-protein kinase in PC12 cells incubated with extracellular ATP, suggesting the involvement of ecto-protein kinase in the reported inhibition of NGF-induced neurite extension by K-252b. Preincubation of PC12 cells with 50 ng/ml of NGF for 5 min stimulated the activity of ecto-protein kinase toward all its endogenous substrates. Exposure of PC12 cells to the same NGF concentration for 3 days revealed another substrate of ecto-protein kinase, a 53K protein, whose surface phosphorylation is expressed only after NGF-induced neuronal differentiation. In the concentration range (10–100 μM) at which 6-thioguanine blocked NGF-promoted neurite outgrowth in PC12 cells, 6-thioguanine effectively inhibited the phosphorylation of specific proteins by ecto-protein kinase. This study provides the basis for continued investigation of the involvement of ecto-protein kinase and its surface protein substrates in neuronal differentiation, neuritogenesis, and synaptogenesis.  相似文献   
158.
159.
BRCA1 maps proximal to D17S579 on chromosome 17q21 by genetic analysis   总被引:7,自引:6,他引:1  
Previous studies have demonstrated linkage between early-onset breast cancer and ovarian cancer and genetic markers on chromosome 17q21. These markers define the location of a gene (BRCA1) which appears to be inherited as an autosomal dominant susceptibility allele. We analyzed five families with multiple affected individuals for evidence of linkage to the BRCA1 region. Two of the five families appear to be linked to BRCA1. One apparently linked family contains critical recombinants, suggesting that the gene is proximal to the marker D17S579 (Mfd188). These findings are consistent with the maximum-likelihood position estimated by the Breast Cancer Linkage Consortium and with recombination events detected in other linked families. Linkage analysis was greatly aided by PCR-based analysis of paraffin-embedded normal breast tissue from deceased family members, demonstrating the feasibility and importance of this approach. One of the two families with evidence of linkage between breast cancer and genetic markers flanking BRCA1 represents the first such family of African-American descent to be reported in detail.  相似文献   
160.
Flowers of the organ number (meristic) mutant clavata1-1 of Arabidopsis thaliana (Brassicaceae) were studied to examine timing and patterns of floral organogenesis as compared to the wild type. All clavata1-1 flowers examined had four- instead of two-loculed gynoecia; half showed increased numbers of stamens; and 10% formed increased numbers of sepals. An inflorescence plastochron index was used to establish the timing of developmental events during flower organogenesis. clavata1-1 flowers initiate faster but grow more slowly than in the wild type. The stages of sepal and stamen initiation were prolonged compared to those of the wild type. Although gynoecial initiation was not prolonged, the preceding stage was and it was characterized by a proliferation of meristematic cells above the initiating stamens. The clavata1-1 flower apex did not become wider than that of the wild type until after the establishment of the gynoecium. We propose that clavata1-1 is a heterochronic mutant, where flower organ number increases are due partly to prolongation of organ initiation stages.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号