首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14835篇
  免费   1439篇
  国内免费   5篇
  16279篇
  2023年   54篇
  2022年   194篇
  2021年   351篇
  2020年   193篇
  2019年   243篇
  2018年   307篇
  2017年   252篇
  2016年   438篇
  2015年   770篇
  2014年   784篇
  2013年   892篇
  2012年   1192篇
  2011年   1150篇
  2010年   707篇
  2009年   615篇
  2008年   875篇
  2007年   855篇
  2006年   829篇
  2005年   745篇
  2004年   701篇
  2003年   691篇
  2002年   601篇
  2001年   123篇
  2000年   74篇
  1999年   138篇
  1998年   205篇
  1997年   119篇
  1996年   119篇
  1995年   111篇
  1994年   99篇
  1993年   119篇
  1992年   99篇
  1991年   80篇
  1990年   80篇
  1989年   69篇
  1988年   77篇
  1987年   56篇
  1986年   57篇
  1985年   60篇
  1984年   64篇
  1983年   76篇
  1982年   68篇
  1981年   64篇
  1980年   69篇
  1979年   45篇
  1978年   49篇
  1977年   46篇
  1976年   45篇
  1975年   45篇
  1974年   63篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Nuclear localization signals (NLSs) target proteins into the nucleus through mediating interactions with nuclear import receptors. Here, we perform a quantitative analysis of the correlation between NLS receptor affinity and the steady-state distribution of NLS-bearing cargo proteins between the cytoplasm and the nucleus of live yeast, which reflects the relative import rates of various NLS sequences. We find that there is a complicated, but monotonic quantitative relationship between the affinity of an NLS for the import receptor, importin alpha, and the steady-state accumulation of the cargo in the nucleus. This analysis takes into consideration the impact of protein size. In addition, the hypothetical upper limit to an NLS affinity for the receptors is explored through genetic approaches. Overall, our results indicate that there is a correlation between the binding affinity of an NLS cargo for the NLS receptor, importin alpha, and the import rate for this cargo. This correlation, however, is not maintained for cargoes that bind to the NLS receptor with very weak or very strong affinity.  相似文献   
992.
All plants, except for the grasses, must reduce Fe(III) to Fe(II) in order to acquire iron. In Arabidopsis, the enzyme responsible for this reductase activity in the roots is encoded by FRO2. Two Arabidopsis mutants, frd4-1 and frd4-2, were isolated in a screen for plants that do not induce Fe(III) chelate reductase activity in their roots in response to iron deficiency. frd4 mutant plants are chlorotic and grow more slowly than wild-type Col-0 plants. Additionally, frd4 chloroplasts are smaller in size and possess dramatically fewer thylakoid membranes and grana stacks when compared with wild-type chloroplasts. frd4 mutant plants express both FRO2 and IRT1 mRNA normally in their roots under iron deficiency, arguing against any defects in systemic iron-deficiency signaling. Further, transgenic frd4 plants accumulate FRO2-dHA fusion protein under iron-deficient conditions, suggesting that the frd4 mutation acts post-translationally in reducing Fe(III) chelate reductase activity. FRO2-dHA appears to localize to the plasma membrane of root epidermal cells in both Col-0 and frd4-1 transgenic plants when grown under iron-deficient conditions. Map-based cloning revealed that the frd4 mutations reside in cpFtsY, which encodes a component of one of the pathways responsible for the insertion of proteins into the thylakoid membranes of the chloroplast. The presence of cpFtsY mRNA and protein in the roots of wild-type plants suggests additional roles for this protein, in addition to its known function in targeting proteins to the thylakoid membrane in chloroplasts.  相似文献   
993.
Sex hormones have been shown to contribute to the organization and function of the brain during puberty and adolescence. Moreover, it has been suggested that distinct hormone changes in girls versus boys may contribute to the emergence of sex differences in internalizing and externalizing behavior during adolescence. In the current longitudinal study, the influence of within-subject changes in puberty (physical and hormonal) on cortical thickness and surface area was examined across a 2-year span, while controlling for age. Greater increases in Tanner Stage predicted less superior frontal thinning and decreases in precuneus surface area in both sexes. Significant Tanner Stage and sex interactions were also seen, with less right superior temporal thinning in girls but not boys, as well as greater decreases in the right bank of the superior temporal sulcus surface area in boys compared to girls. In addition, within-subject changes in testosterone over the 2-year follow-up period were found to relate to decreases in middle superior frontal surface area in boys, but increases in surface area in girls. Lastly, larger increases in estradiol in girls predicted greater middle temporal lobe thinning. These results show that within-subject physical and hormonal markers of puberty relate to region and sex-specific changes in cortical development across adolescence.  相似文献   
994.
Calorie restriction (CR) with adequate nutrient intake is a potential geroprotective intervention. To advance this concept in humans, we tested the hypothesis that moderate CR in healthy young-to-middle-aged individuals would reduce circulating biomarkers of cellular senescence, a fundamental mechanism of aging and aging-related conditions. Using plasma specimens from the Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy (CALERIE™) phase 2 study, we found that CR significantly reduced the concentrations of several senescence biomarkers at 12 and 24 months compared to an ad libitum diet. Using machine learning, changes in biomarker concentrations emerged as important predictors of the change in HOMA-IR and insulin sensitivity index at 12 and 24 months, and the change in resting metabolic rate residual at 12 months. Finally, using adipose tissue RNA-sequencing data from a subset of participants, we observed a significant reduction in a senescence-focused gene set in response to CR at both 12 and 24 months compared to baseline. Our results advance the understanding of the effects of CR in humans and further support a link between cellular senescence and metabolic health.  相似文献   
995.
996.
A primary goal of many next‐generation bioenergy systems is to increase ecosystem services such as soil carbon (C) storage and nutrient retention. Evaluating whether bioenergy management systems are achieving these goals is challenging in part because these processes occur over long periods of time at varying spatial scales. Investigation of microbially mediated soil processes at the microbe scale may provide early insights into the mechanisms driving these long‐term ecosystem services. Furthermore, seasonal fluctuations in microbial activity are rarely considered when estimating whole ecosystem functioning, but are central to decomposition, soil structure, and realized C storage. Some studies have characterized extracellular enzyme activity within soil structures (aggregates); however, seasonal variation in decomposition at the microscale remains virtually unknown, particularly in managed ecosystems. As such, we hypothesize that temporal variation in aggregate turnover is a strong regulator of microbial activity, with important implications for decomposition and C and nitrogen (N) storage in bioenergy systems. We address variation in soil microbial extracellular enzyme activity spatially across soil aggregates and temporally across two growing seasons in three ecosystems managed for bioenergy feedstock production: Zea mays L. (corn) agroecosystem, fertilized and unfertilized reconstructed tallgrass prairie. We measured potential N‐acetyl‐glucosaminidase (NAG), β‐glucosidase (BG), β‐xylosidase (BX), and cellobiohydrolase (CB) enzyme activity. Aggregate turnover in prairie systems was driven by precipitation events and seasonal spikes in enzyme activity corresponded with aggregate turnover events. In corn monocultures, soil aggregates turned over early in the growing season, followed by increasing, albeit low, enzyme activity throughout the growing season. Independent of management system or sampling date, NAG activity was greatest in large macroaggregates (>2000 μm) and CB activity was greatest in microaggregates (<250 μm). High microbial activity coupled with greater aggregation in prairie bioenergy systems may reduce loss of soil organic matter through decomposition and increase soil C storage.  相似文献   
997.
Strategies for successful primary treatment of HER2-positive breast cancer include use of the HER2 inhibitors trastuzumab or lapatinib in combination with standard chemotherapy. While successful, many patients develop resistance to these HER2 inhibitors indicating an unmet need. Consequently, current research efforts are geared toward understanding mechanisms of resistance and the signaling modalities that regulate these mechanisms. We have undertaken a study to examine whether signaling molecules downstream of epidermal growth factor receptor, which often act as compensatory signaling outlets to circumvent HER2 inhibition, can be co-targeted to overcome resistance. We identified JNK signaling as a potential area of intervention and now show that inhibiting JNK using the pan-JNK inhibitor, SP600125, is effective in the HER2-positive, resistant JIMT-1 xenograft mammary tumor model. We also investigate potential combination strategies to bolster the effects of JNK inhibition and find that co-targeting of JNK and the protein kinase HUNK can prohibit tumor growth of resistant HER2-positive mammary tumors in vivo.  相似文献   
998.
Various factor affecting NADPH-oxidation by resting human leucocyte granules (LG) at acid pH, have been investigated.It was found that:
1) oxidation of NADPH by LG was increasingly inhibited by increased cyanide concentrations in the medium and was abolished by 4 mM cyanide.
2) with or without cyanide in the incubation medium, LG omitted, Mn++, in the presence of NADPH induced superoxide anion (O¯2) production, as evidenced by oxygen consumption and H2O2 production, which were abolished (in the absence of cyanide) by cytochrome C (a potent O¯2 scavenger).
3) Both NADPH oxidation in the presence of 2 mM cyanide (cyanide-resistant) and in its absence (cyanide-sensitive) by LG occured only in the presence of Mn++, and both were inhibited by superoxide dismutase.
4) Cyanide-resistant NADPH oxidation by LG generated H2O2, was inhibited by H2O2 and was not modified by «active catalase. The ratio of cyanide-resistant NADPH oxidation/O2 uptake was 1 up to 1.25 mM NADPH, and increased above this concentration.
5) Cyanide-sensitive NADPH oxidation was inhibited by catalase and increased upon addition of H2O2. The ratio of cyanide-sensitive NADPH oxidation/O2 uptake was 2.
It was concluded that after initiation by O¯2, produced independently of LG, two sequential types of LG dependent NADPH oxidations occur. First, an O¯2-dependent protein mediated NADPH oxidation (cyanide-resistant) which generates H2O2 and O¯2 occurs. Second, NADPH peroxidation (cyanide-sensitive) which utilizes H2O2 takes place.  相似文献   
999.
The ras and myc oncoproteins cooperate to transform the established murine fibroblast cell line C3H10T1/2. To determine the impact of overexpression of the myc oncoprotein on the phenotype of C3H10T1/2 cells, two C3H10Tl/2-myc clonal cell lines, SVc-myc 11A and myc neo 13A, were isolated and characterized. Although both C3H10Tl/2-myc cell lines are morphologically indistinguishable from wild-type C3H10T1/2 cells and possess growth properties similar to those of C3H10T1/2 cells, each displays a predisposition to transformation following transfection with the activated form of the human H-ras gene. In C3H10T1/2 cells overexpressing the v-myc or H-ras oncogenes, the levels of mRNA encoding max, the recently identified oligomerization partner of myc, remain unchanged, suggesting that the endogenous level of max in C3H10T1/2 cells is sufficient for a high frequency of transformation by ras and myc. Based on these studies, the C3H10Tl/2-myc clonal cell lines we describe are suitable model systems for examining the molecular role of the myc protein in transformation and for characterizing additional factors that synergize with myc in multistep transformation.  相似文献   
1000.
Summary We have used the cDNA clone encoding maize glutathione-S-transferase (GST I) to isolate a genomic DNA clone containing the complete GST I gene. Nucleotide sequence analysis of the cDNA and genomic clones has yielded a complete amino acid sequence for maize GST I and provided the exon-intron map of its gene. The mRNA homologous sequences in the maize GST I gene consist of a 107 bp 5 untranslated region, a 642 bp coding region and 340 bp of the 3 untranslated region. They are divided into three exons by two introns which interrupt the coding region. The 5 untranslated spacer contains an unusual sequence of pentamer AGAGG repeated seven times. The inbred maize line (Missouri 17) contains a single gene for GST I, whereas the hybrid line (3780A) contains two genes. Nucleotide sequence analysis of the primer extended cDNA products reveals that the 5 untranslated regions of the two genes in the hybrid 3780A are identical except for a 6 bp internal deletion (or insertion). The amino acid sequence of maize GST I shares no apparent sequence homology with the published sequences of animal GST's and represents the first published sequence of a plant GST. re]19850813 ac]19851126  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号