首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   8篇
  2023年   1篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   5篇
  2015年   3篇
  2014年   3篇
  2013年   5篇
  2012年   6篇
  2011年   12篇
  2010年   8篇
  2009年   2篇
  2008年   7篇
  2007年   5篇
  2006年   6篇
  2005年   2篇
  2004年   2篇
  1988年   1篇
排序方式: 共有76条查询结果,搜索用时 578 毫秒
41.
Biological invasions are worldwide phenomena that have reached alarming levels among aquatic species. There are key challenges to understand the factors behind invasion propensity of non‐native populations in invasion biology. Interestingly, interpretations cannot be expanded to higher taxonomic levels due to the fact that in the same genus, there are species that are notorious invaders and those that never spread outside their native range. Such variation in invasion propensity offers the possibility to explore, at fine‐scale taxonomic level, the existence of specific characteristics that might predict the variability in invasion success. In this work, we explored this possibility from a molecular perspective. The objective was to provide a better understanding of the genetic diversity distribution in the native range of species that exhibit contrasting invasive propensities. For this purpose, we used a total of 784 sequences of the cytochrome c oxidase subunit I of mitochondrial DNA (mtDNA‐COI) collected from seven Gammaroidea, a superfamily of Amphipoda that includes species that are both successful invaders (Gammarus tigrinus, Pontogammarus maeoticus, and Obesogammarus crassus) and strictly restricted to their native regions (Gammarus locusta, Gammarus salinus, Gammarus zaddachi, and Gammarus oceanicus). Despite that genetic diversity did not differ between invasive and non‐invasive species, we observed that populations of non‐invasive species showed a higher degree of genetic differentiation. Furthermore, we found that both geographic and evolutionary distances might explain genetic differentiation in both non‐native and native ranges. This suggests that the lack of population genetic structure may facilitate the distribution of mutations that despite arising in the native range may be beneficial in invasive ranges. The fact that evolutionary distances explained genetic differentiation more often than geographic distances points toward that deep lineage divergence holds an important role in the distribution of neutral genetic diversity.  相似文献   
42.
We present a case of 77 years old male with suspected giant cell arteritis. With anamnesis, physical examination, immunological tests, Colour Doppler ultrasonography of superficial temporal artery and finally with patohistological analysis of temporal artery biopsy, we came to right diagnosis.  相似文献   
43.
Phosphorylation of the C terminus SQ motif that defines H2A.X variants is required for efficient DNA double-strand break (DSB) repair in diverse organisms but has not been studied in ciliated protozoa. Tetrahymena H2A.X is one of two similarly expressed major H2As, thereby differing both from mammals, where H2A.X is a quantitatively minor component, and from Saccharomyces cerevisiae where it is the only type of major H2A. Tetrahymena H2A.X is phosphorylated in the SQ motif in both the mitotic micronucleus and the amitotic macronucleus in response to DSBs induced by chemical agents and in the micronucleus during prophase of meiosis, which occurs in the absence of a synaptonemal complex. H2A.X is phosphorylated when programmed DNA rearrangements occur in developing macronuclei, as for immunoglobulin gene rearrangements in mammals, but not during the DNA fragmentation that accompanies breakdown of the parental macronucleus during conjugation, correcting the previous interpretation that this process is apoptosis-like. Using strains containing a mutated (S134A) SQ motif, we demonstrate that phosphorylation of this motif is important for Tetrahymena cells to recover from exogenous DNA damage and is required for normal micronuclear meiosis and mitosis and, to a lesser extent, for normal amitotic macronuclear division; its absence, while not lethal, leads to the accumulation of DSBs in both micro- and macronuclei. These results demonstrate multiple roles of H2A.X phosphorylation in maintaining genomic integrity in different phases of the Tetrahymena life cycle.  相似文献   
44.
A curious fusion between chlorite dismutase-like and antibiotic biosynthesis monooxygenase-like domains within a single open reading frame has been revealed by both sequence homology and structural modeling in Haloferax volcanii PitA and its homologues in other halophilic archaea. While this fusion may reflect an environmental adaptation to life in hypersaline environments and hence one specific to haloarchaea, PitA and its homologues may represent a paradigm of biologically-relevant interplay between these two distinct activities in accordance with the Rosetta Stone approach.  相似文献   
45.
Ferroportin (Fpn) is the only known iron exporter in vertebrates. Hepcidin, a peptide secreted by the liver in response to iron or inflammation, binds to Fpn, inducing its internalization and degradation. We show that after binding of hepcidin, Fpn is tyrosine phosphorylated at the plasma membrane. Mutants of human Fpn that do not get internalized or that are internalized slowly show either absent or impaired phosphorylation. We identify adjacent tyrosines as the phosphorylation sites and show that mutation of both tyrosines prevents hepcidin-mediated Fpn internalization. Once internalized, Fpn is dephosphorylated and subsequently ubiquitinated. An inability to ubiquitinate Fpn does not prevent hepcidin-induced internalization, but it inhibits the degradation of Fpn. Ubiquitinated Fpn is trafficked through the multivesicular body pathway en route to degradation in the late endosome/lysosome. Depletion of proteins involved in multivesicular body trafficking (Endosome Sorting Complex Required for Transport proteins), by small-interfering RNA, reduces the trafficking of Fpn-green fluorescent to the lysosome.  相似文献   
46.
The reduction of hippocampal volume was frequently reported in schizophrenia, but not in bipolar disorder This volume reduction is associated with clinical features of schizophrenia, in particular with working and verbal memory impairments. Schizoaffective disorder, as a specific disorder sharing clinical features of both schizophrenia and bipolar disorder is rarely analyzed as a separate disorder in neurobiological studies. The aim of this study was to compare hippocampal volumes in separate groups of patients with schizophrenia, schizoaffective and bipolar disorder. Hippocampal volumes were estimated using high resolution magnetic resonance imaging in 60 subjects, 15 subjects in each patient and one healthy volunteer (control) group. There were no significant differences in hippocampal volume between bipolar disorder and control group. Hippocampal volume was statistically significantly reduced in the group of patients with schizophrenia and schizoaffective disorder, compared to either bipolar disorder or control group, thus supporting the hypothesis that hippocampal volume reduction could be considered as a possible neurobiological basis for clinical aspects of schizophrenia and schizoaffective disorder associated with working and verbal memory impairment.  相似文献   
47.
Mor A  Aizman E  George J  Kloog Y 《PloS one》2011,6(6):e21712

Background

Reduced glucose uptake due to insulin resistance is a pivotal mechanism in the pathogenesis of type 2 diabetes. It is also associated with increased inflammation. Ras inhibition downregulates inflammation in various experimental models. The aim of this study was to examine the effect of Ras inhibition on insulin sensitivity and glucose uptake, as well as its influence on type 2 diabetes development.

Methods and Findings

The effect of Ras inhibition on glucose uptake was examined both in vitro and in vivo. Ras was inhibited in cells transfected with a dominant-negative form of Ras or by 5-fluoro-farnesylthiosalicylic acid (F-FTS), a small-molecule Ras inhibitor. The involvement of IκB and NF-κB in Ras-inhibited glucose uptake was investigated by immunoblotting. High fat (HF)-induced diabetic mice were treated with F-FTS to test the effect of Ras inhibition on induction of hyperglycemia. Each of the Ras-inhibitory modes resulted in increased glucose uptake, whether in insulin-resistant C2C12 myotubes in vitro or in HF-induced diabetic mice in vivo. Ras inhibition also caused increased IκB expression accompanied by decreased expression of NF-κB . In fat-induced diabetic mice treated daily with F-FTS, both the incidence of hyperglycemia and the levels of serum insulin were significantly decreased.

Conclusions

Inhibition of Ras apparently induces a state of heightened insulin sensitization both in vitro and in vivo. Ras inhibition should therefore be considered as an approach worth testing for the treatment of type 2 diabetes.  相似文献   
48.
Ferroportin exports iron into plasma from absorptive enterocytes, erythrophagocytosing macrophages, and hepatic stores. The hormone hepcidin controls cellular iron export and plasma iron concentrations by binding to ferroportin and causing its internalization and degradation. We explored the mechanism of hepcidin-induced endocytosis of ferroportin, the key molecular event in systemic iron homeostasis. Hepcidin binding caused rapid ubiquitination of ferroportin in cell lines overexpressing ferroportin and in murine bone marrow-derived macrophages. No hepcidin-dependent ubiquitination was observed in C326S ferroportin mutant which does not bind hepcidin. Substitutions of lysines between residues 229 and 269 in the third cytoplasmic loop of ferroportin prevented hepcidin-dependent ubiquitination and endocytosis of ferroportin, and promoted cellular iron export even in the presence of hepcidin. The human ferroportin mutation K240E, previously associated with clinical iron overload, caused hepcidin resistance in vitro by interfering with ferroportin ubiquitination. Our study demonstrates that ubiquitination is the functionally relevant signal for hepcidin-induced ferroportin endocytosis.  相似文献   
49.
To investigate the impact of acute heat exposure on maintenance of redox homeostasis and antioxidant balance related to aging, we have determined the GSH levels in the liver and kidney, and the activity of antioxidant enzymes in the same organs from Wistar rats at two different ages, 35 days and 18 months. The animals were housed individually in a special heated chamber maintaining a constant temperature of 40±0.5 °C. The results showed that the level of endogenous GSH was signi?cantly lower in aged than in young animals. In general, the activity of antioxidant enzymes in investigated tissues displayed an age-dependent decline. Indeed, we found unchanged CAT activity and decreased GPx activity with age. On the other hand acute heat exposure led to disproportion between peroxide metabolizing enzymes (CAT, GPx) and GR, thus promoting H2O2 accumulation and prooxidative state in the liver of young animals. The results for the impact of l-2-oxothiazolidine-4-carboxylate in combined stress model suggested that in spite of restore levels of GSH, the restoration of oxido-reductive balance might have only been partial due to irreversible alterations in antioxidant enzymes set by acute heat exposure and aging. Interestingly, young animals appeared to be more sensitive to the supplementation of the l-2-oxothiazolidine-4-carboxylate, likely because of the more extensive increase of GSH observed in young l-2-oxothiazolidine-4-carboxylate treated animals.  相似文献   
50.
Previously, we characterized a pathway necessary for the processing of NAD+ and for uptake of nicotinamide riboside (NR) in Haemophilus influenzae. Here we report on the role of NadR, which is essential for NAD+ utilization in this organism. Different NadR variants with a deleted ribonucleotide kinase domain or with a single amino acid change were characterized in vitro and in vivo with respect to cell viability, ribonucleotide kinase activity, and NR transport. The ribonucleotide kinase mutants were viable only in a nadV+ (nicotinamide phosphoribosyltransferase) background, indicating that the ribonucleotide kinase domain is essential for cell viability in H. influenzae. Mutations located in the Walker A and B motifs and the LID region resulted in deficiencies in both NR phosphorylation and NR uptake. The ribonucleotide kinase function of NadR was found to be feedback controlled by NAD+ under in vitro conditions and by NAD+ utilization in vivo. Taken together, our data demonstrate that the NR phosphorylation step is essential for both NR uptake across the inner membrane and NAD+ synthesis and is also involved in controlling the NAD+ biosynthesis rate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号