首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   311篇
  免费   16篇
  327篇
  2023年   2篇
  2021年   13篇
  2020年   8篇
  2019年   9篇
  2018年   5篇
  2017年   8篇
  2016年   18篇
  2015年   21篇
  2014年   16篇
  2013年   28篇
  2012年   19篇
  2011年   18篇
  2010年   17篇
  2009年   16篇
  2008年   14篇
  2007年   13篇
  2006年   16篇
  2005年   15篇
  2004年   6篇
  2003年   12篇
  2002年   6篇
  2001年   7篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   3篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1976年   1篇
  1975年   6篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有327条查询结果,搜索用时 15 毫秒
51.
52.
53.
Trinucleotide repeats are microsatellite sequences that are polymorphic in length. Their expansion in specific genes underlies a number of neurodegenerative disorders. Using ultraviolet-visible, circular dichroism, nuclear magnetic resonance (NMR) spectroscopies and electrospray ionization mass spectrometry, the structural preferences of RNA molecules composed of two and four repeats of AGG, CGG and UGG in the presence of K+, Na+ and NH4+ were analysed. (AGG)2A, (AGG)4A, p(UGG)2U and p(UGG)4U strongly prefer folding into G-quadruplexes, whereas CGG-containing sequences can adopt different types of structure depending on the cation and on the number of repeats. In particular, the two-repeat CGG sequence folds into a G-quadruplex in potassium buffer. We also found that each G-quadruplex fold is different: A:(G:G:G:G)A hexads were found for (AGG)2A, whereas mixed G:C:G:C tetrads and U-tetrads were observed in the NMR spectra of G(CGG)2C and p(UGG)2U, respectively. Finally, our NMR study highlights the influence of the strand sequence on the structure formed, and the influence of the intracellular environment on the folding. Importantly, we highlight that although potassium ions are prevalent in cells, the structures observed in the HeLa cell extract are not always the same as those prevailing in biophysical studies in the presence of K+ ions.  相似文献   
54.
Degradable aliphatic polyesters such as polylactides, polyglycolides and their copolymers are used in several biomedical and pharmaceutical applications. We analyzed the influence of poly(L-lactide-co-glycolide) (PLGA) thin films on the adhesion, proliferation, motility and differentiation of primary human skin keratinocytes and fibroblasts in the context of their potential use as cell carriers for skin tissue engineering. We did not observe visible differences in the morphology, focal contact appearance, or actin cytoskeleton organization of skin cells cultured on PLGA films compared to those cultured under control conditions. Moreover, we did not detect biologically significant differences in proliferative activity, migration parameters, level of differentiation, or expression of vinculin when the cells were cultured on PLGA films and tissue culture polystyrene. Our results indicate that PLGA films do not affect the basic functions of primary human skin keratinocytes and fibroblasts and thus show acceptable biocompatibility in vitro, paving the way for their use as biomaterials for skin tissue engineering.  相似文献   
55.
56.
Arakaki N  Kita T  Shibata H  Higuti T 《FEBS letters》2007,581(18):3405-3409
Here we show that the cell-surface expression of the alpha subunit of H(+)-ATP synthase is markedly increased during adipocyte differentiation. Treatment of differentiated adipocytes with small molecule inhibitors of H(+)-ATP synthase or antibodies against alpha and beta subunits of H(+)-ATP synthase leads to a decrease in cytosolic lipid droplet accumulation. Apolipoprotein A-I, which has been shown to bind to the ectopic beta-chain of H(+)-ATP synthase and inhibit the activity of cell-surface H(+)-ATP synthase, also was found to inhibit cytosolic lipid accumulation. These results suggest that the cell-surface H(+)-ATP synthase has a previously unsuspected role in lipid metabolism in adipocytes.  相似文献   
57.
Niemann-Pick disease is a genetic disorder, affecting approximately 1 to 150,000 living births per year; in Poland 1-5 cases. Usually diagnosed in the childhood, Niemann-Pick disease results in death in the teenage years. Niemann-Pick disease is defined as a lysosomal storage disorder and is related to impaired transport and/or accumulation of specific lipids inside the cell. In this report, we provide evidence about potential role of annexins, calcium- and membrane-binding proteins, in the formation and stabilization of cholesterol-rich microdomains and their possible function in organizing the membranes of early and late endosomes, organelles affected in the type C Niemann-Pick disease characterized by abnormal accumulation of cholesterol and glycosphingolipids in lysosomal like organelles.  相似文献   
58.
Abstract: Subunit c is normally present as an inner mitochondrial membrane component of the F0 section of the ATP synthase complex, but in the late infantile form of neuronal ceroid lipofuscinosis (NCL) it was also found in lysosomes in high concentrations. To explore the mechanism of storage of subunit c, the rates of degradation and synthesis of subunit c were measured in fibroblast cell types from controls and patients with the late infantile form of NCL. The radiolabel from subunit c decreased with time in control cells, whereas no apparent loss of radioactivity of subunit c was found in patients' cells. There were no significant differences between control cells and cells with disease in the degradation of cytochrome oxidase subunit IV, an inner membrane protein of mitochondria. A combination of pulse-chase and subcellular fractionation analysis showed that a delay of intramitochondrial loss from prelabeled subunit c was seen in all diseased cells tested. Lysosomal appearance of labeled subunit c could be detected after chase for more than 1 week and its radioactivities were variable among diseased cell types. The biosynthetic rate of subunit c was almost the same in both control and patient cells. Northern blotting analyses showed that mRNAs for P1 and P2 genes had no significant difference in lengths and amounts between control and patient cells. Results suggest a specific failure in the degradation of subunit c after its normal inclusion in mitochondria and its consequent accumulation in lysosomes. This is the first direct evidence to show a delay of subunit c degradation in the cells from the late infantile form of NCL.  相似文献   
59.
The synthases that produce fatty acids in mammals (FASs) are arranged as large multidomain polypeptides. The growing fatty acid chain is bound covalently during chain elongation and reduction to the acyl carrier protein (ACP) domain that is then able to access each catalytic site. In this work we report the high-resolution nuclear magnetic resonance (NMR) solution structure of the isolated rat fatty acid synthase apoACP domain. The final ensemble of NMR structures and backbone (15)N relaxation studies show that apoACP adopts a single, well defined fold. On conversion to the holo form, several small chemical shift changes are observed on the ACP for residues surrounding the phosphopantetheine attachment site (as monitored by backbone (1)H-(15)N correlation experiments). However, there are negligible chemical shift changes when the holo form is modified to either the hexanoyl or palmitoyl forms. For further NMR analysis, a (13)C,(15)N-labeled hexanoyl-ACP sample was prepared and full chemical shift assignments completed. Analysis of two-dimensional F(2)-filtered and three-dimensional (13)C-edited nuclear Overhauser effect spectroscopy experiments revealed no detectable NOEs to the acyl chain. These experiments demonstrate that unlike other FAS ACPs studied, this Type I ACP does not sequester a covalently linked acyl moiety, although transient interactions cannot be ruled out. This is an important mechanistic difference between the ACPs from Type I and Type II FASs and may be significant for the modulation and regulation of these important mega-synthases.  相似文献   
60.
Traumatic brain injury (TBI) is a leading cause of death and disability with no specific effective therapy, in part because disease driving mechanisms remain to be elucidated. Receptor interacting protein kinases (RIPKs) are serine/threonine kinases that assemble multi-molecular complexes that induce apoptosis, necroptosis, inflammasome and nuclear factor kappa B activation. Prior studies using pharmacological inhibitors implicated necroptosis in the pathogenesis of TBI and stroke, but these studies cannot be used to conclusively demonstrate a role for necroptosis because of the possibility of off target effects. Using a model of cerebral contusion and RIPK3 and mixed lineage kinase like knockout (MLKL−/−) mice, we found evidence for activation of RIPK3 and MLKL and assembly of a RIPK1-RIPK3-MLKL necrosome complex in pericontusional brain tissue. Phosphorylated forms of RIPK3 and MLKL were detected in endothelium, CD11b + immune cells, and neurons, and RIPK3 was upregulated and activated in three-dimensional human endothelial cell cultures subjected to CCI. RIPK3−/− and MLKL−/− mice had reduced blood-brain barrier damage at 24 h (p < 0.05), but no differences in neuronal death (6 h, p = ns in CA1, CA3 and DG), brain edema (24 h, p = ns), or lesion size (4 weeks, p = ns) after CCI. RIPK3−/−, but not MLKL−/− mice, were protected against postinjury motor and cognitive deficits at 1–4 weeks (RIPK3−/− vs WT: p < 0.05 for group in wire grip, Morris water maze hidden platform trials, p < 0.05 for novel object recognition test, p < 0.01 for rotarod test). RIPK3−/− mice had reduced infiltrating leukocytes (p < 0.05 vs WT in CD11b + cells, microglia and macrophages), HMGB1 release and interleukin-1 beta activation at 24–48 h (p < 0.01) after CCI. Our data indicate that RIPK3 contributes to functional outcome after cerebral contusion by mechanisms involving inflammation but independent of necroptosis.Subject terms: Molecular neuroscience, Brain injuries  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号