首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8059篇
  免费   765篇
  国内免费   7篇
  2022年   52篇
  2021年   122篇
  2020年   67篇
  2019年   92篇
  2018年   123篇
  2017年   111篇
  2016年   179篇
  2015年   308篇
  2014年   353篇
  2013年   450篇
  2012年   536篇
  2011年   553篇
  2010年   384篇
  2009年   360篇
  2008年   485篇
  2007年   495篇
  2006年   443篇
  2005年   426篇
  2004年   433篇
  2003年   400篇
  2002年   392篇
  2001年   87篇
  2000年   63篇
  1999年   99篇
  1998年   135篇
  1997年   86篇
  1996年   85篇
  1995年   76篇
  1994年   81篇
  1993年   76篇
  1992年   57篇
  1991年   65篇
  1990年   75篇
  1989年   49篇
  1988年   58篇
  1987年   56篇
  1986年   42篇
  1985年   63篇
  1984年   60篇
  1983年   59篇
  1982年   64篇
  1981年   61篇
  1980年   64篇
  1979年   49篇
  1978年   43篇
  1977年   43篇
  1976年   48篇
  1974年   37篇
  1973年   47篇
  1970年   24篇
排序方式: 共有8831条查询结果,搜索用时 484 毫秒
951.
The rare disease cerebrotendinous xanthomatosis (CTX) is due to a lack of sterol 27-hydroxylase (CYP27A1) and is characterized by cholestanol-containing xanthomas in brain and tendons. Mice with the same defect do not develop xanthomas. The driving force in the development of the xanthomas is likely to be conversion of a bile acid precursor into cholestanol. The mechanism behind the xanthomas in the brain has not been clarified. We demonstrate here that female cyp27a1−/− mice have an increase of cholestanol of about 2.5- fold in plasma, 6-fold in tendons, and 12-fold in brain. Treatment of cyp27a1−/− mice with 0.05% cholic acid normalized the cholestanol levels in tendons and plasma and reduced the content in the brain. The above changes occurred in parallel with changes in plasma levels of 7α-hydroxy-4-cholesten-3-one, a precursor both to bile acids and cholestanol. Injection of a cyp27a1−/− mouse with 2H7-labeled 7α-hydroxy-4-cholesten-3-one resulted in a significant incorporation of 2H7-cholestanol in the brain. The results are consistent with a concentration-dependent flux of 7α-hydroxy-4-cholesten-3-one across the blood-brain barrier in cyp27a1−/− mice and subsequent formation of cholestanol. It is suggested that the same mechanism is responsible for accumulation of cholestanol in the brain of patients with CTX.  相似文献   
952.
953.
Microcrystalline uniformly 13C,15N-enriched yeast triosephosphate isomerase (TIM) is sequentially assigned by high-resolution solid-state NMR (SSNMR). Assignments are based on intraresidue and interresidue correlations, using dipolar polarization transfer methods, and guided by solution NMR assignments of the same protein. We obtained information on most of the active-site residues involved in chemistry, including some that were not reported in a previous solution NMR study, such as the side-chain carbons of His95. Chemical shift differences comparing the microcrystalline environment to the aqueous environment appear to be mainly due to crystal packing interactions. Site-specific perturbations of the enzyme's chemical shifts upon ligand binding are studied by SSNMR for the first time. These changes monitor proteinwide conformational adjustment upon ligand binding, including many of the sites probed by solution NMR and X-ray studies. Changes in Gln119, Ala163, and Gly210 were observed in our SSNMR studies, but were not reported in solution NMR studies (chicken or yeast). These studies identify a number of new sites with particularly clear markers for ligand binding, paving the way for future studies of triosephosphate isomerase dynamics and mechanism.  相似文献   
954.
Selectins (L, E, and P) are vascular endothelial molecules that play an important role in the recruitment of leukocytes to inflamed tissue. In this regard, P-Selectin glycoprotein-1 (PSGL-1) has been identified as a ligand for P-Selectin. PSGL-1 binds to P-Selectin through the interaction of core-2 O-glycan expressing sialyl Lewisx oligosaccharide and the three tyrosine sulfate residues. Herein, we report the synthesis of threonine-linked core-2 O-glycan as an amino acid building block for the synthesis of PSGL-1. This building block was further incorporated in the Fmoc-assisted solid-phase peptide synthesis to provide a portion of the PSGL-1 glycopeptide.  相似文献   
955.
Pectin methylesterase and its proteinaceous inhibitor: a review   总被引:1,自引:0,他引:1  
Pectin methylesterase (PME) catalyses the demethoxylation of pectin, a major plant cell wall polysaccharide. Through modification of the number and distribution of methyl-esters on the pectin backbone, PME affects the susceptibility of pectin towards subsequent (non-) enzymatic conversion reactions (e.g., pectin depolymerisation) and gel formation, and, hence, its functionality in both plant cell wall and pectin-containing food products. The enzyme plays a key role in vegetative and reproductive plant development in addition to plant-pathogen interactions. In addition, PME action can impact favourably or deleteriously on the structural quality of plant-derived food products. Consequently, PME and also the proteinaceous PME inhibitor (PMEI) found in several plant species and specifically inhibiting plant PMEs are highly relevant for plant biologists as well as for food technologists and are intensively studied in both fields. This review paper provides a structured, comprehensive overview of the knowledge accumulated over the years with regard to PME and PMEI. Attention is paid to both well-established and novel data concerning (i) their occurrence, polymorphism and physicochemical properties, (ii) primary and three-dimensional protein structures, (iii) catalytic and inhibitory activities, (iv) physiological roles in vivo and (v) relevance of (endogenous and exogenous) enzyme and inhibitor in the (food) industry. Remaining research challenges are indicated.  相似文献   
956.
957.
DNA-binding response regulators (RRs) of the OmpR/PhoB subfamily alternate between inactive and active conformational states, with the latter having enhanced DNA-binding affinity. Phosphorylation of an aspartate residue in the receiver domain, usually via phosphotransfer from a cognate histidine kinase, stabilizes the active conformation. Many of the available structures of inactive OmpR/PhoB family proteins exhibit extensive interfaces between the N-terminal receiver and C-terminal DNA-binding domains. These interfaces invariably involve the α4-β5-α5 face of the receiver domain, the locus of the largest differences between inactive and active conformations and the surface that mediates dimerization of receiver domains in the active state. Structures of receiver domain dimers of DrrB, DrrD, and MtrA have been determined, and phosphorylation kinetics were analyzed. Analysis of phosphotransfer from small molecule phosphodonors has revealed large differences in autophosphorylation rates among OmpR/PhoB RRs. RRs with substantial domain interfaces exhibit slow rates of phosphorylation. Rates are greatly increased in isolated receiver domain constructs. Such differences are not observed between autophosphorylation rates of full-length and isolated receiver domains of a RR that lacks interdomain interfaces, and they are not observed in histidine kinase-mediated phosphotransfer. These findings suggest that domain interfaces restrict receiver domain conformational dynamics, stabilizing an inactive conformation that is catalytically incompetent for phosphotransfer from small molecule phosphodonors. Inhibition of phosphotransfer by domain interfaces provides an explanation for the observation that some RRs cannot be phosphorylated by small molecule phosphodonors in vitro and provides a potential mechanism for insulating some RRs from small molecule-mediated phosphorylation in vivo.  相似文献   
958.
The generation of the Lew.Tg(mRen2) congenic hypertensive rat strain, developed through a backcross of the hypertensive (mRen2)27 transgenic rat with normotensive Lewis rats, provides a new model by which primary hypertension can be studied without the genetic variability found in the original strain. The purpose of this study was to characterize the Lew.Tg(mRen2) rats by dually investigating the effects of type 1 angiotensin II (ANG II) receptor (AT(1)) blockade and angiotensin-converting enzyme (ACE) activity inhibition on the ANG-(1-7)/ACE2 axis of the renin-angiotensin system in this new hypertensive model. The control of blood pressure elicited by 12-day administration of either lisinopril (mean difference change = 92 +/- 2, P < 0.05) or losartan (mean difference change = 69 +/- 2, P < 0.05) was associated with 54% and 33% increases in cardiac ACE2 mRNA and 54% and 43% increases in cardiac ACE mRNA, respectively. Lisinopril induced a 3.1-fold (P < 0.05) increase in renal cortical expression of ACE2, whereas losartan increased ACE2 mRNA 3.5-fold (P < 0.05). Both treatment regimens increased renal ACE mRNA 2.6-fold (P < 0.05). The two therapies augmented ACE2 protein activity, as well as increased cardiac and renal AT(1) receptor mRNAs. ACE inhibition reduced plasma ANG II levels (81%, P < 0.05) and increased plasma ANG-(1-7) (265%, P < 0.05), whereas losartan had no effect on the peptides. In contrast with what had been shown in normotensive rats, ACE inhibition decreased renal ANG II excretion and transiently decreased ANG-(1-7) excretion, whereas losartan treatment was associated with a consistent decrease in ANG-(1-7) urinary excretion rates. In response to the treatments, the expression of both renal cortical renin and angiotensinogen mRNAs was significantly augmented. The paradoxical effects of blockade of ANG II synthesis and activity on urinary excretion rates of the peptides and plasma angiotensins levels suggest that, in Lew.Tg(mRen2) congenic rats, a failure of compensatory ACE2 and ANG-(1-7)-dependent vasodepressor mechanisms may contribute both to the development and progression of hypertension driven by increased formation of endogenous ANG II.  相似文献   
959.
Due to loss of cell membrane integrity, necrotic cells passively release several cytosolic factors that can activate antigen presenting cells and other immune cells. In contrast, cells dying by apoptosis do not induce an inflammatory response. Here we show that necrotic cell death induced by several stimuli, such as TNF, anti-Fas or dsRNA, coincides with NF-kappaB-and p38MAPK-mediated upregulation and secretion of the pro-inflammatory cytokine IL-6. This event is greatly reduced or absent in conditions of apoptotic cell death induced by the same stimuli. This demonstrates that besides the capacity of necrotic cells to induce an inflammatory response due to leakage of cellular contents, necrotic dying cells themselves are involved in the expression and secretion of inflammatory cytokines. Moreover, inhibition of NF-kappaB and p38MAPK activation does not affect necrotic cell death in all conditions tested. This suggests that the activation of inflammatory pathways is distinct from the activation of necrotic cell death sensu strictu.  相似文献   
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号