首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   160篇
  免费   15篇
  2024年   1篇
  2023年   3篇
  2022年   4篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   7篇
  2013年   6篇
  2012年   9篇
  2011年   11篇
  2010年   3篇
  2009年   5篇
  2008年   5篇
  2007年   7篇
  2006年   7篇
  2005年   4篇
  2004年   5篇
  2003年   9篇
  2002年   7篇
  2001年   6篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   6篇
  1990年   3篇
  1988年   3篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   4篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1966年   1篇
  1964年   1篇
  1963年   4篇
排序方式: 共有175条查询结果,搜索用时 15 毫秒
51.
52.
Oguri E  Steele JE 《Peptides》2003,24(10):1545-1551
Phosphatidylcholine and phosphatidylethanolamine are the major constituents of the phospholipid pool in cockroach (Periplaneta americana) fat body and hemolymph. Both species of phospholipid are significantly decreased 6h after injecting hypertrehalosemic hormone I (HTH-I) into the hemocoel. Loss of phospholipid is accompanied by an accumulation of the phospholipid degradation products glycerophosphorylcholine and glycerol. HTH-I also increases phospholipase activity in the hemolymph and this is thought to be responsible for the depletion of hemolymph phospholipid. Phospholipase activity peaks approximately 2h after injection of HTH-I and returns to normal at 6h. In vitro, total phospholipid in the fat body is decreased by HTH-I whereas the concentration of diacylglycerol displays a corresponding increase. HTH-I elevates free fatty acid levels but has no effect on triacylglycerol. These effects of HTH-I are blocked by the phospholipase inhibitor mepacrine.  相似文献   
53.
Antagonism of voltage-dependent K+ (Kv) currents in pancreatic beta-cells may contribute to the ability of glucagon-like peptide-1 (GLP-1) to stimulate insulin secretion. The mechanism and signaling pathway regulating these currents in rat beta-cells were investigated using the GLP-1 receptor agonist exendin 4. Inhibition of Kv currents resulted from a 20-mV leftward shift in the voltage dependence of steady-state inactivation. Blocking cAMP or protein kinase A (PKA) signaling (Rp-cAMP and H-89, respectively) prevented the inhibition of currents by exendin 4. However, direct activation of this pathway alone by intracellular dialysis of cAMP or the PKA catalytic subunit (cPKA) could not inhibit currents, implicating a role for alternative signaling pathways. A number of phosphorylation sites associated with phosphatidylinositol 3 (PI3)-kinase activation were up-regulated in GLP-1-treated MIN6 insulinoma cells, and the PI3 kinase inhibitor wortmannin could prevent antagonism of beta-cell currents by exendin 4. Antagonists of Src family kinases (PP1) and the epidermal growth factor (EGF) receptor (AG1478) also prevented current inhibition by exendin 4, demonstrating a role for Src kinase-mediated trans-activation of the EGF tyrosine kinase receptor. Accordingly, the EGF receptor agonist betacellulin could replicate the effects of exendin 4 in the presence of elevated intracellular cAMP. Downstream, the PKCzeta pseudosubstrate inhibitor could prevent current inhibition by exendin 4. Therefore, antagonism of beta-cell Kv currents by GLP-1 receptor activation requires both cAMP/PKA and PI3 kinase/PKCzeta signaling via trans-activation of the EGF receptor. This represents a novel dual pathway for the control of Kv currents by G protein-coupled receptors.  相似文献   
54.
In order to investigate the genetic diversity of Campylobacter concisus to assist molecular typing studies, the use of macrorestriction profiling was examined. A suitable protocol was developed that included the use of formaldehyde pretreatment to prevent DNA degradation, and restriction enzyme NotI for pulsed field gel electrophoresis-based genotyping. Subsequently, 53 strains of C. concisus, principally from cases of diarrhoea in children, were examined. Fifty-one distinct patterns were obtained, indicating the high discriminatory potential of the method. Patterns comprised between one and 14 restriction fragments, with type and reference strains of two well-defined genomospecies of oral and faecal origin containing six and 12 fragments respectively. Our results show that C. concisus is genetically diverse and suggest the species as currently defined to be a taxonomic continuum comprised of several genomospecies. The pulsed field gel electrophoresis typing method described here has considerable potential for molecular epidemiological studies of C. concisus and may be a useful adjunctive method for helping to resolve key taxonomic issues for this species.  相似文献   
55.
Excess of free iron is thought to harm plant cells by enhancing the intracellular production of reactive oxygen intermediates (ROI). Cytosolic ascorbate peroxidase (cAPX) is an iron-containing, ROI-detoxifying enzyme induced in response to iron overload or oxidative stress. We studied the expression of cAPX in leaves of de-rooted bean plants in response to iron overload. cAPX expression, i.e., mRNA and protein, was rapidly induced in response to iron overload. This induction correlated with the increase in iron content in leaves and occurred in the light as well as in the dark. Reduced glutathione (GSH), which plays an important role in activating the ROI signal transduction pathway as well as in ROI detoxification, was found to enhance the induction of APX mRNA by iron. To determine whether cAPX induction during iron overload was due to an increase in the amount of free iron, which serves as a co-factor for cAPX synthesis, or due to iron-mediated increase in ROI production, we tested the expression of APX in leaves under low oxygen pressure. This treatment, which suppresses the formation of ROI, completely abolished the induction of cAPX mRNA during iron overload, without affecting the rate of iron uptake by plants. Taken together, our results suggest that high intracellular levels of free iron in plants lead to the enhanced production of ROI, which in turn induces the expression of cAPX, possibly using GSH as an intermediate signal. We further show, using cAPX-antisense transgenic plants, that cAPX expression is essential to prevent iron-mediated tissue damage in tobacco.  相似文献   
56.
The physiological and biochemical changes during the adaptation of Nostoc muscorum to salt are accompanied by specific structural changes. Cells of Nostoc muscorum exposed to saline medium vary in size and envelope organization. There are also drastic changes in the intracellular organization of the thylakoidal assembly. The heterocysts exhibit a preferential tolerance to NaCl rather than mannitol. These findings suggest that Nostoc muscorum is equipped with a specific physiological capacity for NaCl tolerance.  相似文献   
57.
58.
In this paper we report the combination of microfluidics, optogenetics and calcium imaging as a cheap and convenient platform to study synaptic communication between neuronal populations in vitro. We first show that Calcium Orange indicator is compatible in vitro with a commonly used Channelrhodopsine-2 (ChR2) variant, as standard calcium imaging conditions did not alter significantly the activity of transduced cultures of rodent primary neurons. A fast, robust and scalable process for micro-chip fabrication was developed in parallel to build micro-compartmented cultures. Coupling optical fibers to each micro-compartment allowed for the independent control of ChR2 activation in the different populations without crosstalk. By analyzing the post-stimuli activity across the different populations, we finally show how this platform can be used to evaluate quantitatively the effective connectivity between connected neuronal populations.  相似文献   
59.
The spores of several Bacillus species, including Bacillus pumilus SAFR-032 and B. safensis FO-36b, which were isolated from the spacecraft assembly facility at NASA''s Jet Propulsion Laboratory, are unusually resistant to UV radiation and hydrogen peroxide. In order to identify candidate genes that might be associated with these resistances, the whole genome of B. pumilus SAFR-032, and the draft genome of B. safensis FO-36b were compared in detail with the very closely related type strain B. pumilus ATCC7061T. 170 genes are considered characteristic of SAFR-032, because they are absent from both FO-36b and ATCC7061T. Forty of these SAFR-032 characteristic genes are entirely unique open reading frames. In addition, four genes are unique to the genomes of the resistant SAFR-032 and FO-36b. Fifty three genes involved in spore coat formation, regulation and germination, DNA repair, and peroxide resistance, are missing from all three genomes. The vast majority of these are cleanly deleted from their usual genomic context without any obvious replacement. Several DNA repair and peroxide resistance genes earlier reported to be unique to SAFR-032 are in fact shared with ATCC7061T and no longer considered to be promising candidates for association with the elevated resistances. Instead, several SAFR-032 characteristic genes were identified, which along with one or more of the unique SAFR-032 genes may be responsible for the elevated resistances. These new candidates include five genes associated with DNA repair, namely, BPUM_0608 a helicase, BPUM_0652 an ATP binding protein, BPUM_0653 an endonuclease, BPUM_0656 a DNA cytosine-5- methyltransferase, and BPUM_3674 a DNA helicase. Three of these candidate genes are in immediate proximity of two conserved hypothetical proteins, BPUM_0654 and BPUM_0655 that are also absent from both FO-36b and ATCC7061T. This cluster of five genes is considered to be an especially promising target for future experimental work.  相似文献   
60.
The current study was designed to examine the sulfation of bile acids and bile alcohols by the Zebra danio (Danio rerio) SULTs in comparison with human SULTs. A systematic analysis using the fifteen Zebra danio SULTs revealed that SULT3 ST2 and SULT3 ST3 were the major bile acid/alcohol-sulfating SULTs. Among the eleven human SULTs, only SULT2A1 was found to be capable of sulfating bile acids and bile alcohols. To further investigate the sulfation of bile acids and bile alcohols by the two Zebra danio SULT3 STs and the human SULT2A1, pH-dependence and kinetics of the sulfation of bile acids/alcohols were analyzed. pH-dependence experiments showed that the mechanisms underlying substrate recognition for the sulfation of lithocholic acid (a bile acid) and 5α-petromyzonol (a bile alcohol) differed between the human SULT2A1 and the Zebra danio SULT3 ST2 and ST3. Kinetic analysis indicated that both the two Zebra danio SULT3 STs preferred petromyzonol as substrate compared to bile acids. In contrast, the human SULT2A1 was more catalytically efficient toward lithocholic acid than petromyzonol. Collectively, the results imply that the Zebra danio and human SULTs have evolved to serve for the sulfation of, respectively, bile alcohols and bile acids, matching the cholanoid profile in these two vertebrate species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号