首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   950篇
  免费   88篇
  1038篇
  2024年   2篇
  2023年   9篇
  2022年   31篇
  2021年   46篇
  2020年   22篇
  2019年   23篇
  2018年   38篇
  2017年   25篇
  2016年   38篇
  2015年   57篇
  2014年   69篇
  2013年   67篇
  2012年   112篇
  2011年   82篇
  2010年   54篇
  2009年   52篇
  2008年   55篇
  2007年   36篇
  2006年   43篇
  2005年   36篇
  2004年   34篇
  2003年   21篇
  2002年   35篇
  2001年   5篇
  2000年   4篇
  1999年   9篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1991年   1篇
  1989年   1篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1941年   1篇
  1938年   1篇
  1937年   2篇
  1928年   1篇
  1926年   2篇
排序方式: 共有1038条查询结果,搜索用时 0 毫秒
81.
82.
Pleomorphic Trypanosoma brucei strains are characterized by their ability to differentiate from replicating long slender forms into non-dividing short stumpy forms in the mammalian host. The differentiation process can be efficiently induced in vitro by treatment with the membrane-permeable cAMP derivative 8-(4-chlorophenylthio)-cAMP (pCPTcAMP). In contrast, monomorphic T. brucei strains do not differentiate to stumpy forms in the host. Here, we show that exposure of monomorphic, culture-adapted T. brucei bloodstream forms to pCPTcAMP allowed their subsequent differentiation into short stumpy forms. The stumpy nature of pCPTcAMP-treated parasites was confirmed by (1) morphological change, (2) inhibition of growth and DNA synthesis, (3) cell cycle arrest in the G(1)/G(0) phase, (4) expression of NADH diaphorase activity and dihydrolipoamide dehydrogenase, (5) disappearance of the small subunit of ribonucleotide reductase, (6) up-regulation of the major lysosomal membrane protein, and (7) efficient transformation into replicating procyclic insect forms after induction with citrate/cis-aconitate. Our results indicate that the inability of monomorphic T. brucei bloodstream forms to differentiate into short stumpy forms in the host may be due to a failure in the signalling pathway rather than in the differentiation process itself. Treatment of monomorphic bloodstream trypanosomes with pCPTcAMP could be a useful method for identifying the genes involved in the slender-to-stumpy differentiation process.  相似文献   
83.
Sexual selection theory suggests that choice for partners carrying dissimilar genes at the major histocompatibility complex (MHC) may play a role in maintaining genetic variation in animal populations by limiting inbreeding or improving the immunity of future offspring. However, it is often difficult to establish whether the observed MHC dissimilarity among mates drives mate choice or represents a by‐product of inbreeding avoidance based on MHC‐independent cues. Here, we used 454‐sequencing and a 10‐year study of wild grey mouse lemurs (Microcebus murinus), small, solitary primates from western Madagascar, to compare the relative importance on the mate choice of two MHC class II genes, DRB and DQB, that are equally variable but display contrasting patterns of selection at the molecular level, with DRB under stronger diversifying selection. We further assessed the effect of the genetic relatedness and of the spatial distance among candidate mates on the detection of MHC‐dependent mate choice. Our results reveal inbreeding avoidance, along with disassortative mate choice at DRB, but not at DQB. DRB‐disassortative mate choice remains detectable after excluding all related dyads (characterized by a relatedness coefficient r > 0), but varies slightly with the spatial distance among candidate mates. These findings suggest that the observed deviations from random mate choice at MHC are driven by functionally important MHC genes (like DRB) rather than passively resulting from inbreeding avoidance and further emphasize the need for taking into account the spatial and genetic structure of the population in correlative tests of MHC‐dependent mate choice.  相似文献   
84.
Microbial decomposer C metabolism is considered a factor controlling soil C stability, a key regulator of global climate. The plant rhizosphere is now recognized as a crucial driver of soil C dynamics but specific mechanisms by which it can affect C processing are unclear. Climate change could affect microbial C metabolism via impacts on the plant rhizosphere. Using continuous 13C labelling under controlled conditions that allowed us to quantify SOM derived-C in all pools and fluxes, we evaluated the microbial metabolism of soil C in the rhizosphere of a C4 native grass exposed to elevated CO2 and under variation in N concentrations in soil and in plant root C:N stoichiometry. Our results demonstrated that this plant can influence soil C metabolism and further, that elevated CO2 conditions can alter this role by increasing microbial C efficiency as indicated by a reduction in soil-derived C respiration per unit of soil C-derived microbial biomass. Moreover, under elevated CO2 increases in soil N, and notably, root tissue N concentration increased C efficiency, suggesting elevated CO2 shifted the stoichiometric balance so N availability was a more critical factor regulating efficiency than under ambient conditions. The root C:N stoichiometry effect indicates that plant chemical traits such as root N concentration are able to influence the metabolism of soil C and that elevated CO2 conditions can modulate this role. Increased efficiency in soil C use was associated with negative rhizosphere priming and we hypothesize that the widely observed phenomenon of rhizosphere priming may result, at least in part, from changes in the metabolic efficiency of microbial populations. Observed changes in the microbial community support that shifting microbial populations were a contributing factor to the observed metabolic responses. Our case study points at greater efficiency of the SOM-degrading populations in a high CO2, high N world, potentially leading to greater C storage of microbially assimilated C in soil.  相似文献   
85.
Future ecosystem properties of grasslands will be driven largely by belowground biomass responses to climate change, which are challenging to understand due to experimental and technical constraints. We used a multi-faceted approach to explore single and combined impacts of elevated CO2 and warming on root carbon (C) and nitrogen (N) dynamics in a temperate, semiarid, native grassland at the Prairie Heating and CO2 Enrichment experiment. To investigate the indirect, moisture mediated effects of elevated CO2, we included an irrigation treatment. We assessed root standing mass, morphology, residence time and seasonal appearance/disappearance of community-aggregated roots, as well as mass and N losses during decomposition of two dominant grass species (a C3 and a C4). In contrast to what is common in mesic grasslands, greater root standing mass under elevated CO2 resulted from increased production, unmatched by disappearance. Elevated CO2 plus warming produced roots that were longer, thinner and had greater surface area, which, together with greater standing biomass, could potentially alter root function and dynamics. Decomposition increased under environmental conditions generated by elevated CO2, but not those generated by warming, likely due to soil desiccation with warming. Elevated CO2, particularly under warming, slowed N release from C4—but not C3—roots, and consequently could indirectly affect N availability through treatment effects on species composition. Elevated CO2 and warming effects on root morphology and decomposition could offset increased C inputs from greater root biomass, thereby limiting future net C accrual in this semiarid grassland.  相似文献   
86.
The impact of increasing organic load on anaerobic digestion foaming was studied at both full and bench scale. Organic loadings of 1.25, 2.5 and 5 kg VS m−3 were applied to bench-scale digesters. Foaming was monitored at a full scale digester operated in a comparable organic loading range over 15 months. The bench scale batch studies identified 2.5 kg VS m−3 as a critical threshold for foam initiation while 5 kg VS m−3 resulted in persistent foaming. Investigation of a full scale foaming event corroborated the laboratory observation that foaming may be initiated at a loading rate of ?2.5 kg VS m−3. Experimental findings on foam composition and differences in the quality characteristics between foaming and non-foaming sludges indicated that foam initiation derived from the combined effect of the liquid and gas phases inside a digester and that the solids/biomass ultimately stabilized foaming.  相似文献   
87.
The power of proteomics allows unparalleled opportunity to query the molecular mechanisms of a malignant cell and the tumor microenvironment in patients with ovarian cancer and other solid tumors. This information has given us insight into the perturbations of signaling pathways within tumor cells and has aided the discovery of new drug targets for the tumor and possible prognostic indicators of outcome and disease response to therapy. Proteomics analysis of serum and ascites has also given us sources with which to discover possible early markers for the presence of new disease and for the progression of established cancer throughout the course of treatment. Unfortunately, this wealth of information has yielded little to date in changing the clinical care of these patients from a diagnostic, prognostic, or treatment perspective. The rational examination and translation of proteomics data in the context of past clinical trials and the design of future clinical trials must occur before we can march forward into the future of personalized medicine.  相似文献   
88.

Objective

Evaluation of diabetic sensorimotor polyneuropathy (DSP) is hindered by the need for complex nerve conduction study (NCS) protocols and lack of predictive biomarkers. We aimed to determine the performance of single and simple combinations of NCS parameters for identification and future prediction of DSP.

Materials and Methods

406 participants (61 with type 1 diabetes and 345 with type 2 diabetes) with a broad spectrum of neuropathy, from none to severe, underwent NCS to determine presence or absence of DSP for cross-sectional (concurrent validity) analysis. The 109 participants without baseline DSP were re-evaluated for its future onset (predictive validity). Performance of NCS parameters was compared by area under the receiver operating characteristic curve (AROC).

Results

At baseline there were 246 (60%) Prevalent Cases. After 3.9 years mean follow-up, 25 (23%) of the 109 Prevalent Controls that were followed became Incident DSP Cases. Threshold values for peroneal conduction velocity and sural amplitude potential best identified Prevalent Cases (AROC 0.90 and 0.83, sensitivity 80 and 83%, specificity 89 and 72%, respectively). Baseline tibial F-wave latency, peroneal conduction velocity and the sum of three lower limb nerve conduction velocities (sural, peroneal, and tibial) best predicted 4-year incidence (AROC 0.79, 0.79, and 0.85; sensitivity 79, 70, and 81%; specificity 63, 74 and 77%, respectively).

Discussion

Individual NCS parameters or their simple combinations are valid measures for identification and future prediction of DSP. Further research into the predictive roles of tibial F-wave latencies, peroneal conduction velocity, and sum of conduction velocities as markers of incipient nerve injury is needed to risk-stratify individuals for clinical and research protocols.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号