首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1247篇
  免费   116篇
  1363篇
  2024年   2篇
  2023年   10篇
  2022年   37篇
  2021年   53篇
  2020年   25篇
  2019年   27篇
  2018年   42篇
  2017年   34篇
  2016年   41篇
  2015年   73篇
  2014年   83篇
  2013年   78篇
  2012年   127篇
  2011年   96篇
  2010年   61篇
  2009年   62篇
  2008年   69篇
  2007年   50篇
  2006年   57篇
  2005年   51篇
  2004年   51篇
  2003年   35篇
  2002年   50篇
  2001年   16篇
  2000年   15篇
  1999年   18篇
  1998年   8篇
  1997年   7篇
  1996年   5篇
  1995年   6篇
  1994年   2篇
  1992年   3篇
  1991年   14篇
  1990年   4篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   6篇
  1980年   5篇
  1976年   3篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1971年   4篇
  1937年   2篇
  1928年   1篇
  1926年   2篇
排序方式: 共有1363条查询结果,搜索用时 15 毫秒
11.

Rationale

Lack of an experimental model of portopulmonary hypertension (POPH) has been a major obstacle in understanding of pathophysiological mechanisms underlying the disease.

Objective

We investigated the effects of CCl4-mediated cirrhosis on the pulmonary vasculature, as an initial step towards an improved understanding of POPH.

Methods And Results

Male C57BL/6 mice received intraperitoneal injection of either sterile olive oil or CCl4 3 times/week for 12 weeks. Cirrhosis and portal hypertension were confirmed by evidence of bridging fibrosis and nodule formation in CCl4-treated liver determined by trichrome/picrosirius red staining and an increase in spleen weight/body weight ratio, respectively. Staining for the oxidative stress marker, 4-hydroxynonenal (4-HNE), was strong in the liver but was absent in the lung, suggesting that CCl4 did not directly induce oxidative injury in the lung. Pulmonary acceleration time (PAT) and the ratio of PAT/pulmonary ejection time (PET) measured by echocardiography were significantly decreased in cirrhotic mice. Increase in right ventricle (RV) weight/body weight as well as in the weight ratio of RV/(left ventricle + septum) further demonstrated the presence of pathological changes in the pulmonary circulation in these mice. Histological examination revealed that lungs of cirrhotic mice have excessive accumulation of perivascular collagen and thickening of the media of the pulmonary artery.

Conclusion

Collectively, our data demonstrate that chronic CCl4 treatment induces pathological changes in pulmonary circulation in cirrhotic mice. We propose that this murine cirrhotic model provides an exceptional tool for future studies of the molecular mechanisms mediating pulmonary vascular diseases associated with cirrhosis and for evaluation of novel therapeutic interventions.  相似文献   
12.

Introduction

Agonistic autoantibodies (Aabs) against the angiotensin II receptor type 1 (AT1R) and the endothelin receptor type A (ETAR) have been identified in patients with systemic sclerosis (SSc). In our present study, we examined the expression of the AT1R and the ETAR in human immune cells and the pathological effects mediated through these receptors by their corresponding Aabs.

Methods

Protein expression of AT1R and ETAR on peripheral blood mononuclear cells (PBMCs) from healthy individuals and SSc patients was analyzed using flow cytometry, and mRNA expression of both receptors in PBMCs from healthy donors was examined by real-time PCR. In addition, PBMCs from healthy donors were stimulated in vitro with affinity-purified immunoglobulin G (IgG) fractions from SSc patients positive for AT1R and ETAR Aabs, as well as with IgG from healthy donors serving as controls. Alterations in cell surface marker expression, cytokine secretion and chemotactic motility were analyzed using flow cytometry, enzyme-linked immunosorbent assays and chemotaxis assays, respectively. The results were correlated with the characteristics and clinical findings of the IgG donors.

Results

Both AT1R and ETAR were expressed on PBMCs in humans. Protein expression of both receptors was decreased in SSc patients compared with that of healthy donors and declined during the course of disease. IgG fractions of SSc patients positive for AT1R and ETAR Aabs induced T-cell migration in an Aab level–dependent manner. Moreover, IgG of SSc patients stimulated PBMCs to produce more interleukin 8 (IL-8) and chemokine (C-C motif) ligand 18 (CCL18) than did the IgG of healthy donors. All effects were significantly reduced by selective AT1R and ETAR antagonists. Statistical analysis revealed an association of SSc-IgG induced high IL-8 concentrations with an early disease stage and of high CCL18 concentrations with lung fibrosis onset and vascular complications in the respective IgG donors.

Conclusion

In our present study, we could demonstrate the expression of both AT1R and ETAR on human peripheral T cells, B cells and monocytes. The decreased receptor expression in SSc patients, the inflammatory and profibrotic effects upon Aab stimulation of PBMCs in vitro and the associations with clinical findings suggest a role for Aab-induced activation of immune cells mediated by the AT1R and the ETAR in the pathogenesis or even the onset of the disease.  相似文献   
13.
Hereditary and sporadic laminopathies are caused by mutations in genes encoding lamins, their partners, or the metalloprotease ZMPSTE24/FACE1. Depending on the clinical phenotype, they are classified as tissue‐specific or systemic diseases. The latter mostly manifest with several accelerated aging features, as in Hutchinson–Gilford progeria syndrome (HGPS) and other progeroid syndromes. MicroRNAs are small noncoding RNAs described as powerful regulators of gene expression, mainly by degrading target mRNAs or by inhibiting their translation. In recent years, the role of these small RNAs has become an object of study in laminopathies using in vitro or in vivo murine models as well as cells/tissues of patients. To date, few miRNAs have been reported to exert protective effects in laminopathies, including miR‐9, which prevents progerin accumulation in HGPS neurons. The recent literature has described the potential implication of several other miRNAs in the pathophysiology of laminopathies, mostly by exerting deleterious effects. This review provides an overview of the current knowledge of the functional relevance and molecular insights of miRNAs in laminopathies. Furthermore, we discuss how these discoveries could help to better understand these diseases at the molecular level and could pave the way toward identifying new potential therapeutic targets and strategies based on miRNA modulation.  相似文献   
14.
Environmental DNA (eDNA) analysis is a powerful tool for remote detection of target organisms. However, obtaining quantitative and longitudinal information from eDNA data is challenging, requiring a deep understanding of eDNA ecology. Notably, if the various size components of eDNA decay at different rates, and we can separate them within a sample, their changing proportions could be used to obtain longitudinal dynamics information on targets. To test this possibility, we conducted an aquatic mesocosm experiment in which we separated fish-derived eDNA components using sequential filtration to evaluate the decay rate and changing proportion of various eDNA particle sizes over time. We then fit four alternative mathematical decay models to the data, building towards a predictive framework to interpret eDNA data from various particle sizes. We found that medium-sized particles (1–10 μm) decayed more slowly than other size classes (i.e., <1 and > 10 μm), and thus made up an increasing proportion of eDNA particles over time. We also observed distinct eDNA particle size distribution (PSD) between our Common carp and Rainbow trout samples, suggesting that target-specific assays are required to determine starting eDNA PSDs. Additionally, we found evidence that different sizes of eDNA particles do not decay independently, with particle size conversion replenishing smaller particles over time. Nonetheless, a parsimonious mathematical model where particle sizes decay independently best explained the data. Given these results, we suggest a framework to discern target distance and abundance with eDNA data by applying sequential filtration, which theoretically has both metabarcoding and single-target applications.  相似文献   
15.
16.
17.
The harmful bloom alga Fibrocapsa japonica has a worldwide distributionin temperate regions and is occasionally responsible for massmortality of fish. Little is known about requirements for optimalgrowth and survival of this species, especially about temperatureconstraints that define natural distribution. Therefore, westudied thermal traits in three Fibrocapsa strains from differentclimate regions. All strains were eurythermal and viable between4 and 32°C, explaining their presence in temperate regions.Some differences in temperature response among the strains wereobserved, not only for growth rate but also for biovolume andnet production. The implication of the observed responses wasevaluated by translating growth performance of strains in thelaboratory to potential performance in the natural habitats.Only the Japanese strain seemed to be well adapted to its environment,while the New Zealand strain exhibited growth and survival overa much broader temperature range, despite the small temperaturefluctuations in its habitat. Interestingly, the German WaddenSea strain encounters lethal temperatures in winter and musthave a resting stage, able to survive temperatures <4°C,to explain its occurrence in this region. However, in general,the responses of the three F. japonica strains in culture werein good agreement with the observed seasonal occurrence in thefield.  相似文献   
18.
Although human activity is considered to be a major driving force affecting the distribution and dynamics of Mediterranean ecosystems, the full consequences of projected climate variability and relative sea-level changes on fragile coastal ecosystems for the next century are still unknown. It is unclear how these waterfront ecosystems can be sustained, as well as the services they provide, when relative sea-level rise and global warming are expected to exert even greater pressures in the near future (drought, habitat degradation and accelerated shoreline retreat). Haifa Bay, northern Israel, has recorded a landward sea invasion, with a maximum sea penetration 4,000 years ago, during an important period of urban development and climate instability. Here, we examine the cumulative pressure of climate shifts and relative sea-level changes in order to investigate the patterns and mechanisms behind forest replacement by an open-steppe. We provide a first comprehensive and integrative study for the southern Levant that shows that (i) human impact, through urbanization, has been the main driver behind ecological erosion in the past 4,000 years; (ii) climate pressures have reinforced this impact; and (iii) local coastal changes have played a decisive role in eroding ecosystem resilience. These three parameters, which have closely interacted during the last 4,000 years in Haifa Bay, clearly indicate that for an efficient management of the coastal habitats, anthropogenic pressures linked to urban development must be reduced in order to mitigate the predicted effects of Global Change.  相似文献   
19.
Summary A cDNA copy of the M2 dsRNA encoding the K2 killer toxin ofSaccharomyces cerevisiae was expressed in yeast using the yeastADH1 promoter. This construct produced K2-specific killing and immunity functions. Efficient K2-specific killing was dependent on the action of the KEX2 endopeptidase and the KEX1 carboxypeptidase, while K2-specific immunity was independent of these proteases. Comparison of the K2 toxin sequence with that of the K1 toxin sequence shows that although they share a common processing pathway and are both encoded by cytoplasmic dsRNAs of similar basic structure, the two toxins are very different at the primary sequence level. Site-specific mutagenesis of the cDNA gene establishes that one of the two potential KEX2 cleavage sites is critical for toxin action but not for immunity. Immunity was reduced by an insertion of two amino acids in the hydrophobic amino-terminal region which left toxin activity intact, indicating an independence of toxin action and immunity.  相似文献   
20.
Cell death plays a critical role in inflammatory responses. During pyroptosis, inflammatory caspases cleave Gasdermin D (GSDMD) to release an N-terminal fragment that generates plasma membrane pores that mediate cell lysis and IL-1 cytokine release. Terminal cell lysis and IL-1β release following caspase activation can be uncoupled in certain cell types or in response to particular stimuli, a state termed hyperactivation. However, the factors and mechanisms that regulate terminal cell lysis downstream of GSDMD cleavage remain poorly understood. In the course of studies to define regulation of pyroptosis during Yersinia infection, we identified a line of Card19-deficient mice (Card19lxcn) whose macrophages were protected from cell lysis and showed reduced apoptosis and pyroptosis, yet had wild-type levels of caspase activation, IL-1 secretion, and GSDMD cleavage. Unexpectedly, CARD19, a mitochondrial CARD-containing protein, was not directly responsible for this, as an independently-generated CRISPR/Cas9 Card19 knockout mouse line (Card19Null) showed no defect in macrophage cell lysis. Notably, Card19 is located on chromosome 13, immediately adjacent to Ninj1, which was recently found to regulate cell lysis downstream of GSDMD activation. RNA-seq and western blotting revealed that Card19lxcn BMDMs have significantly reduced NINJ1 expression, and reconstitution of Ninj1 in Card19lxcn immortalized BMDMs restored their ability to undergo cell lysis in response to caspase-dependent cell death stimuli. Card19lxcn mice exhibited increased susceptibility to Yersinia infection, whereas independently-generated Card19Null mice did not, demonstrating that cell lysis itself plays a key role in protection against bacterial infection, and that the increased infection susceptibility of Card19lxcn mice is attributable to loss of NINJ1. Our findings identify genetic targeting of Card19 being responsible for off-target effects on the adjacent gene Ninj1, disrupting the ability of macrophages to undergo plasma membrane rupture downstream of gasdermin cleavage and impacting host survival and bacterial control during Yersinia infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号