全文获取类型
收费全文 | 953篇 |
免费 | 88篇 |
专业分类
1041篇 |
出版年
2024年 | 2篇 |
2023年 | 9篇 |
2022年 | 31篇 |
2021年 | 46篇 |
2020年 | 22篇 |
2019年 | 23篇 |
2018年 | 38篇 |
2017年 | 25篇 |
2016年 | 38篇 |
2015年 | 57篇 |
2014年 | 69篇 |
2013年 | 67篇 |
2012年 | 112篇 |
2011年 | 82篇 |
2010年 | 55篇 |
2009年 | 52篇 |
2008年 | 56篇 |
2007年 | 36篇 |
2006年 | 43篇 |
2005年 | 36篇 |
2004年 | 34篇 |
2003年 | 21篇 |
2002年 | 36篇 |
2001年 | 5篇 |
2000年 | 4篇 |
1999年 | 9篇 |
1998年 | 5篇 |
1997年 | 3篇 |
1996年 | 3篇 |
1995年 | 3篇 |
1994年 | 1篇 |
1991年 | 1篇 |
1989年 | 1篇 |
1984年 | 2篇 |
1983年 | 1篇 |
1981年 | 1篇 |
1980年 | 2篇 |
1975年 | 1篇 |
1974年 | 1篇 |
1973年 | 1篇 |
1941年 | 1篇 |
1938年 | 1篇 |
1937年 | 2篇 |
1928年 | 1篇 |
1926年 | 2篇 |
排序方式: 共有1041条查询结果,搜索用时 0 毫秒
31.
Nasertorabi F Garcia-Guzman M Briknarová K Larsen E Havert ML Vuori K Ely KR 《Biochemical and biophysical research communications》2004,324(3):993-998
The docking protein p130Cas becomes phosphorylated upon cell adhesion to extracellular matrix proteins, and is thought to play an essential role in cell transformation. Cas transmits signals through interactions with the Src-homology 3 (SH3) and Src-homology 2 domains of FAK or v-Crk signaling molecules, or with 14-3-3 protein, as well as phosphatases PTP1B and PTP-PEST. The large (130kDa), multi-domain Cas molecule contains an SH3 domain, a Src-binding domain, a serine-rich protein interaction region, and a C-terminal region that participates in protein interactions implicated in antiestrogen resistance in breast cancer. In this study, as part of a long-term goal to examine the protein interactions of Cas by X-ray crystallography and nuclear magnetic resonance spectroscopy, molecular constructs were designed to express two adjacent domains, the serine-rich domain and the Src-binding domain, that each participate in intermolecular contacts dependent on protein phosphorylation. The protein products are soluble, homogeneous, monodisperse, and highly suitable for structural studies to define the role of Cas in integrin-mediated cell signaling. 相似文献
32.
Herrmann PC Gillespie JW Charboneau L Bichsel VE Paweletz CP Calvert VS Kohn EC Emmert-Buck MR Liotta LA Petricoin EF 《Proteomics》2003,3(9):1801-1810
Laser capture microdissection was combined with reverse phase protein lysate arrays to quantitatively analyze the ratios of mitochondrial encoded cytochrome c oxidase subunits to nuclear encoded cytochrome c oxidase subunits, and to correlate the ratios with malignant progression in human prostate tissue specimens. Cytochrome c oxidase subunits I-III comprise the catalytic core of the enzyme and are all synthesized from mitochondrial DNA. The remaining subunits (IV-VIII) are synthesized from cellular nuclear DNA. A significant (P < 0.001, 30/30 prostate cases) shift in the relative concentrations of nuclear encoded cytochrome c oxidase subunits IV, Vb, and VIc compared to mitochondrial encoded cytochrome c oxidase subunits I and II was noted during the progression of prostate cancer from normal epithelium through premalignant lesions to invasive carcinoma. Significantly, this shift was discovered to begin even in the premalignant stage. Reverse phase protein lysate array-based observations were corroborated with immunohistochemistry, and extended to a few human carcinomas in addition to prostate. This analysis points to a role for nuclear DNA encoded mitochondrial proteins in carcinogenesis; underscoring their potential as targets for therapy while highlighting the need for full characterization of the mitochondrial proteome. 相似文献
33.
Elise Huchard Christina Albrecht Susanne Schliehe-Diecks Alice Baniel Christian Roos Peter M. Kappeler Peter Markus Brameier 《Immunogenetics》2012,64(12):895-913
The critical role of major histocompatibility complex (MHC) genes in disease resistance, along with their putative function in sexual selection, reproduction and chemical ecology, make them an important genetic system in evolutionary ecology. Studying selective pressures acting on MHC genes in the wild nevertheless requires population-wide genotyping, which has long been challenging because of their extensive polymorphism. Here, we report on large-scale genotyping of the MHC class II loci of the grey mouse lemur (Microcebus murinus) from a wild population in western Madagascar. The second exons from MHC-DRB and -DQB of 772 and 672 individuals were sequenced, respectively, using a 454 sequencing platform, generating more than 800,000 reads. Sequence analysis, through a stepwise variant validation procedure, allowed reliable typing of more than 600 individuals. The quality of our genotyping was evaluated through three independent methods, namely genotyping the same individuals by both cloning and 454 sequencing, running duplicates, and comparing parent–offspring dyads; each displaying very high accuracy. A total of 61 (including 20 new) and 60 (including 53 new) alleles were detected at DRB and DQB genes, respectively. Both loci were non-duplicated, in tight linkage disequilibrium and in Hardy–Weinberg equilibrium, despite the fact that sequence analysis revealed clear evidence of historical selection. Our results highlight the potential of 454 sequencing technology in attempts to investigate patterns of selection shaping MHC variation in contemporary populations. The power of this approach will nevertheless be conditional upon strict quality control of the genotyping data. 相似文献
34.
Elisabet Bjanes Reyna Garcia Sillas Rina Matsuda Benjamin Demarco Timothe Fettrelet Alexandra A. DeLaney Opher S. Kornfeld Bettina L. Lee Eric M. Rodríguez Lpez Daniel Grubaugh Meghan A. Wynosky-Dolfi Naomi H. Philip Elise Krespan Dorothy Tovar Leonel Joannas Daniel P. Beiting Jorge Henao-Mejia Brian C. Schaefer Kaiwen W. Chen Petr Broz Igor E. Brodsky 《PLoS pathogens》2021,17(10)
Cell death plays a critical role in inflammatory responses. During pyroptosis, inflammatory caspases cleave Gasdermin D (GSDMD) to release an N-terminal fragment that generates plasma membrane pores that mediate cell lysis and IL-1 cytokine release. Terminal cell lysis and IL-1β release following caspase activation can be uncoupled in certain cell types or in response to particular stimuli, a state termed hyperactivation. However, the factors and mechanisms that regulate terminal cell lysis downstream of GSDMD cleavage remain poorly understood. In the course of studies to define regulation of pyroptosis during Yersinia infection, we identified a line of Card19-deficient mice (Card19lxcn) whose macrophages were protected from cell lysis and showed reduced apoptosis and pyroptosis, yet had wild-type levels of caspase activation, IL-1 secretion, and GSDMD cleavage. Unexpectedly, CARD19, a mitochondrial CARD-containing protein, was not directly responsible for this, as an independently-generated CRISPR/Cas9 Card19 knockout mouse line (Card19Null) showed no defect in macrophage cell lysis. Notably, Card19 is located on chromosome 13, immediately adjacent to Ninj1, which was recently found to regulate cell lysis downstream of GSDMD activation. RNA-seq and western blotting revealed that Card19lxcn BMDMs have significantly reduced NINJ1 expression, and reconstitution of Ninj1 in Card19lxcn immortalized BMDMs restored their ability to undergo cell lysis in response to caspase-dependent cell death stimuli. Card19lxcn mice exhibited increased susceptibility to Yersinia infection, whereas independently-generated Card19Null mice did not, demonstrating that cell lysis itself plays a key role in protection against bacterial infection, and that the increased infection susceptibility of Card19lxcn mice is attributable to loss of NINJ1. Our findings identify genetic targeting of Card19 being responsible for off-target effects on the adjacent gene Ninj1, disrupting the ability of macrophages to undergo plasma membrane rupture downstream of gasdermin cleavage and impacting host survival and bacterial control during Yersinia infection. 相似文献
35.
36.
Comparative proteome profiling and functional analysis of chronic myelogenous leukemia cell lines 总被引:1,自引:0,他引:1
Fontana S Alessandro R Barranca M Giordano M Corrado C Zanella-Cleon I Becchi M Kohn EC De Leo G 《Journal of proteome research》2007,6(11):4330-4342
The aim of the present study was the molecular profiling of different Ph+ chronic myelogenous leukemia (CML) cell lines (LAMA84, K562, and KCL22) by a proteomic approach. By employing two-dimensional gel electrophoresis combined with mass spectrometry analysis, we have identified 191 protein spots corresponding to 142 different proteins. Among these, 63% were cancer-related proteins and 74% were described for the first time in leukemia cells. Multivariate analysis highlighted significant differences in the global proteomic profile of the three CML cell lines. In particular, the detailed analysis of 35 differentially expressed proteins revealed that LAMA84 cells preferentially expressed proteins associated with an invasive behavior, while K562 and KCL22 cells preferentially expressed proteins involved in drug resistance. These data demonstrate that these CML cell lines, although representing the same pathological phenotype, show characteristics in their protein expression profile that suggest different phenotypic leukemia subclasses. These data contribute a new potential characterization of the CML phenotype and may help to understand interpatient variability in the progression of disease and in the efficacy of a treatment. 相似文献
37.
Isabel E Powell DA Black WC Chan CC Crane S Gordon R Guay J Guiral S Huang Z Robichaud J Skorey K Tawa P Xu L Zhang L Oballa R 《Bioorganic & medicinal chemistry letters》2011,21(1):479-483
Potent and orally bioavailable SCD inhibitors built on an azetidinyl pyridazine scaffold were identified. In a one-month gDIO mouse model of obesity, we demonstrated that there was no therapeutic index even at low doses; efficacy in preventing weight gain tracked closely with skin and eye adverse events. This was attributed to the local SCD inhibition in these tissues as a consequence of the broad tissue distribution observed in mice for this class of compounds. The search for new structural scaffolds which may display a different tissue distribution was initiated. In preparation for an HTS campaign, a radiolabeled azetidinyl pyridazine displaying low non-specific binding in the scintillation proximity assay was prepared. 相似文献
38.
39.
Tawa P Falgueyret JP Guiral S Isabel E Powell DA Zuck P Skorey K 《Journal of biomolecular screening》2011,16(5):506-517
Stearoyl-CoA desaturase (SCD) catalyzes the synthesis of monounsaturated fatty acids and has been implicated in a number of disease states, including obesity and diabetes. To find small-molecule inhibitor leads, a high-throughput scintillation proximity assay (SPA) was developed using the hydrophobic binding characteristics of a glass microsphere scintillant bead to capture SCD1 from a crude lysate of recombinant SCD1 in Sf9 lysate coupled with the strong binding characteristics of an azetidine compound ([(3)H]AZE). The SPA assay was stable over 24 h and could detect compounds with micromolar to nanomolar potencies. A robust 1536-well high-throughput screening assay was developed with good signal-to-noise ratio (10:1) and excellent Z' factor (0.8). A screening collection of 1.6 million compounds was screened at 11 μM, and approximately 7700 compounds were identified as initial hits, exhibiting at least 35% inhibition of [(3)H]AZE binding. Further screening and confirmation with an SCD enzyme activity assay led to a number of new structural leads for inhibition of the enzyme. The SPA assay complements the enzyme activity assay for SCD1 as a tool for the discovery of novel leads in drug discovery. 相似文献
40.
Bosviel R Dumollard E Déchelotte P Bignon YJ Bernard-Gallon D 《Omics : a journal of integrative biology》2012,16(5):235-244
Although soy phytoestrogens have been postulated to exert a protective effect against breast cancer, the attendant mechanisms, in particular epigenetics underpinnings, have remained elusive. We investigated the putative effects on DNA methylation by two naturally occurring isoflavones, genistein and daidzein, in a study of the BRCA1 and BRCA2 oncosuppressor genes in breast cancer cell lines (MCF-7, MDA-MB 231, and MCF10a). A demethylant agent, the 5-azacytidine, and a methylant, the budesonide, were used as treatment controls. DNA methylation of BRCA1 and BRCA2 was investigated with methylated DNA immunoprecipitation coupled with PCR. In parallel, protein expression was determined by Western blot, immunohistochemistry, and confocal microscopy. Our results suggest that treatment with 18.5?μM Genistein or 78.5?μM Daidzein might reverse DNA hypermethylation and restore the expression of the oncosuppressor genes BRCA1 and BRCA2. 5-Azacitydine also enhanced the reexpression of these genes while budesonide had an opposite effect. To the best of our knowledge, these observations, while requiring replication, provide new evidence on potential epigenetic mechanisms by which genistein and daidzein might contribute to regulation of the BRCA1 and BRCA2. Future studies are warranted on whether the demethylating effect of genistein and daidzein is global or focused on select candidate genes. 相似文献