首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   955篇
  免费   88篇
  1043篇
  2024年   2篇
  2023年   9篇
  2022年   31篇
  2021年   46篇
  2020年   22篇
  2019年   23篇
  2018年   38篇
  2017年   25篇
  2016年   38篇
  2015年   57篇
  2014年   69篇
  2013年   67篇
  2012年   112篇
  2011年   83篇
  2010年   54篇
  2009年   52篇
  2008年   55篇
  2007年   37篇
  2006年   43篇
  2005年   37篇
  2004年   34篇
  2003年   21篇
  2002年   35篇
  2001年   5篇
  2000年   6篇
  1999年   9篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1991年   1篇
  1989年   1篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1941年   1篇
  1938年   1篇
  1937年   2篇
  1928年   1篇
  1926年   2篇
排序方式: 共有1043条查询结果,搜索用时 15 毫秒
991.
Fifty-two pregnant rats were ovariectomized on day 16 of gestation to induce estrogen and progesterone deficiencies and the animals were divided into four Groups. Ovariectomy alone (Group A) resulted in the premature delivery of 21% of the fetuses. When ovariectomy was followed by estrogen treatment restoring normal estrogen levels (Group B), premature delivery of the fetuses increased to 96%. Daily injections of 25mg/kg b.w. Naproxen (Group C), given from the day of ovariectomy to reduce prostaglandin synthesis, completely prevented premature delivery if the animals received no estradiol treatment and reduced prematurity to 50% if estradiol had been administered (Group D).It is concluded that the estrogen and progesterone deficiency, induced by ovariectomy, provokes a regulatory imbalance which promotes premature delivery. This imbalance is enhanced when the estradiol levels are restored to normal values, probably because estradiol increases the synthesis of prostaglandin, the intrinsic myometrial stimulant. Naproxen, an inhibitor of prostaglandin synthesis, restores the regulatory balance, partially or completely, depending on the estrogen levels.  相似文献   
992.
We currently face both an extinction and a biome crisis embedded in a changing climate. Many biodiverse ecosystems are being lost at far higher rates than they are being protected or ecologically restored. At the same time, natural climate solutions offer opportunities to restore biodiversity while mitigating climate change. The Bonn Challenge is a U.N. programme to restore biodiversity and mitigate climate change through restoration of the world's degraded landscapes. It provides an unprecedented chance for ecological restoration to become a linchpin tool for addressing many environmental issues. Unfortunately, the Forest and Landscape Restoration programme that underpins the Bonn Challenge, as its name suggests, remains focused on trees and forests, despite rising evidence that many non‐forest ecosystems also offer strong restoration potential for biodiversity and climate mitigation. We see a need for restoration to step back to be more inclusive of different ecosystem types and to step up to provide integrated scientific knowledge to inform large‐scale restoration. Stepping back and up will require assessments of where to restore what species, with recognition that in many landscapes multiple habitat types should be restored. In the process, trade‐offs in the delivery of different ecosystem services (e.g. carbon, biodiversity, water, albedo, livestock forage) should be clearly addressed. We recommend that biodiversity safeguards be included in policy and implemented in practice, to avoid undermining the biophysical relationships that provide ecosystem resilience to climate change. For ecological restoration to contribute to international policy goals will require integrated large‐scale science that works across biome boundaries.  相似文献   
993.
Cellular alignment studies have shown that cell orientation has a large effect on the expression and behavior of cells. Cyclic strain and substrate microtopography have each been shown to regulate cellular alignment. This study examined the combined effects of these two stimuli on the alignment of bovine vascular smooth muscle cells (VSMCs). Cells were cultured on substrates with microgrooves of varying widths oriented either parallel or perpendicular to the direction of an applied cyclic tensile strain. We found that microgrooves oriented parallel to the direction of the applied strain limited the orientation response of VSMCs to the mechanical stimulus, while grooves perpendicular to the applied strain enhanced cellular alignment. Further, the extent to which parallel grooves limited cell alignment was found to be dependent on the groove width. It was found that for both a small (15microm) and a large (70microm) groove width, cells were better able to reorient in response to the applied strain than for an intermediate groove width (40microm). This study indicates that microtopographical cues modulate the orientation response of VSMCs to cyclic strain. The results suggest that there is a range of microgroove dimensions that is most effective at maintaining the orientation of the cells in the presence of an opposing stimulus induced by cyclic strain.  相似文献   
994.
The reaction of singlet molecular oxygen with purine DNA bases is investigated by computational means. We support the formation of a transient endoperoxide for guanine and by classical molecular dynamics simulations we demonstrate that the formation of this adduct does not affect the B-helicity. We thus identify the guanine endoperoxide as a key intermediate, confirming a low-temperature nuclear magnetic resonance proof of its existence, and we delineate its degradation pathway, tracing back the preferential formation of 8-oxoguanine versus spiro-derivates in B-DNA. Finally, the latter oxidized 8-oxodGuo product exhibits an almost barrierless reaction profile, and hence is found, coherently with experience, to be much more reactive than guanine itself. On the contrary, in agreement with experimental observations, singlet-oxygen reactivity onto adenine is kinetically blocked by a higher energy transition state.  相似文献   
995.
The availability of nitrogen to Pseudomonas fluorescens DF57 during straw degradation in bulk soil and in barley rhizosphere was studied by introducing a bioluminescent reporter strain (DF57-N3), responding to nitrogen limitation, to model systems of varying complexity. DF57-N3 was apparently not nitrogen limited in the natural and sterilized bulk soil used for these experiments. The soil was subsequently amended with barley straw, representing a plant residue with a high carbon-to-nitrogen ratio (between 60 and 100). In these systems the DF57-N3 population gradually developed a nitrogen limitation response during the first week of straw decomposition, but exclusively in the presence of the indigenous microbial population. This probably reflects the restricted ability of DF57 to degrade plant polymers by hydrolytic enzymes. The impact of the indigenous population on nitrogen availability to DF57-N3 was mimicked by the cellulolytic organism Trichoderma harzianum Rifai strain T3 when coinoculated with DF57-N3 in sterilized, straw-amended soil. Limitation occurred concomitantly with fungal cellulase production, pointing to the significance of hydrolytic activity for the mobilization of straw carbon sources, thereby increasing the nitrogen demand. Enhanced survival of DF57-N3 in natural soil after straw amendment further indicated that DF57 was cross-fed with carbon/energy sources. The natural barley rhizosphere was experienced by DF57-N3 as an environment with restricted nitrogen availability regardless of straw amendment. In the rhizosphere of plants grown in sterilized soil, nitrogen limitation was less severe, pointing to competition with indigenous microorganisms as an important determinant of the nitrogen status for DF57-N3 in this environment. Hence, these studies have demonstrated that nitrogen availability and gene expression in Pseudomonas is intimately linked to the structure and function of the microbial community. Further, it was demonstrated that the activities of cellulolytic microorganisms may affect the availability of energy and specific nutrients to a group of organisms deficient in hydrolytic enzyme activities.  相似文献   
996.
997.
Egg activation is a series of highly coordinated processes that prepare the mature oocyte for embryogenesis. Typically associated with fertilization, egg activation results in many downstream outcomes, including the resumption of the meiotic cell cycle, translation of maternal mRNAs and cross-linking of the vitelline membrane. While some aspects of egg activation, such as initiation factors in mammals and environmental cues in sea animals, have been well-documented, the mechanics of egg activation in insects are less well-understood. For many insects, egg activation can be triggered independently of fertilization. In Drosophila melanogaster, egg activation occurs in the oviduct resulting in a single calcium wave propagating from the posterior pole of the oocyte. Here we use physical manipulations, genetics and live imaging to demonstrate the requirement of a volume increase for calcium entry at egg activation in ex vivo mature Drosophila oocytes. The addition of water, modified with sucrose to a specific osmolarity, is sufficient to trigger the calcium wave in the mature oocyte and the downstream events associated with egg activation. We show that the swelling process is regulated by the conserved osmoregulatory channels, aquaporins and DEGenerin/Epithelial Na+ channels. Furthermore, through pharmacological and genetic disruption, we reveal a concentration-dependent requirement of transient receptor potential M channels to transport calcium, most probably from the perivitelline space, across the plasma membrane into the mature oocyte. Our data establish osmotic pressure as a mechanism that initiates egg activation in Drosophila and are consistent with previous work from evolutionarily distant insects, including dragonflies and mosquitos, and show remarkable similarities to the mechanism of egg activation in some plants.  相似文献   
998.
An internal carbon source for improving biological nutrient removal   总被引:10,自引:0,他引:10  
This study investigates the potential of mechanically disintegrated surplus activated sludge (SAS) to be used as an internal carbon source for biological nutrient removal (BNR) using two laboratory tests. In the phosphorus release test, the addition of disintegrated sludge as a carbon source was able to enhance phosphate (PO(4)-P) release by 14.9 mg l(-1) PO(4)-P when compared with acetate (7.9 mg l(-1) PO(4)-P), considering the 4.3 mg l(-1) PO(4)-P released in the control vessel, without carbon addition. Similarly, in the denitrification test, the nitrate (NO(3)-N) consumption rate was improved after the addition of disintegrated sludge (14.9 mg NO(3)-Ng(-1)VSS h(-1)) compared with acetate (7.0 mg NO(3)-Ng(-1)VSS h(-1)), taking in consideration the rate obtained in the control vessel (6.9 mg NO(3)-Ng(-1)VSS h(-1)). Two to five minutes of SAS disintegration time in the deflaker (2300-6200 kJ kg(-1) total solids) is recommended for this application.  相似文献   
999.
Rod-cone dystrophy, also known as retinitis pigmentosa (RP), is the most common inherited degenerative photoreceptor disease, for which no therapy is currently available. The P23H rat is one of the most commonly used autosomal dominant RP models. It has been created by incorporation of a mutated mouse rhodopsin (Rho) transgene in the wild-type (WT) Sprague Dawley rat. Detailed genetic characterization of this transgenic animal has however never been fully reported. Here we filled this knowledge gap on P23H Line 1 rat (P23H-1) and provide additional phenotypic information applying non-invasive and state-of-the-art in vivo techniques that are relevant for preclinical therapeutic evaluations. Transgene sequence was analyzed by Sanger sequencing. Using quantitative PCR, transgene copy number was calculated and its expression measured in retinal tissue. Full field electroretinography (ERG) and spectral domain optical coherence tomography (SD-OCT) were performed at 1-, 2-, 3- and 6-months of age. Sanger sequencing revealed that P23H-1 rat carries the mutated mouse genomic Rho sequence from the promoter to the 3’ UTR. Transgene copy numbers were estimated at 9 and 18 copies in the hemizygous and homozygous rats respectively. In 1-month-old hemizygous P23H-1 rats, transgene expression represented 43% of all Rho expressed alleles. ERG showed a progressive rod-cone dysfunction peaking at 6 months-of-age. SD-OCT confirmed a progressive thinning of the photoreceptor cell layer leading to the disappearance of the outer retina by 6 months with additional morphological changes in the inner retinal cell layers in hemizygous P23H-1 rats. These results provide precise genotypic information of the P23H-1 rat with additional phenotypic characterization that will serve basis for therapeutic interventions, especially for those aiming at gene editing.  相似文献   
1000.
In order to plan for global changing climate experiments are being conducted in many countries, but few have monitored the effects of the climate change treatments (warming, elevated CO2) on the experimental plot microclimate. During three years of an eight year study with year-round feedback-controlled infra-red heater warming (1.5/3.0°C day/night) and growing season free-air CO2 enrichment (600 ppm) in the mixed-grass prairie of Wyoming, USA, we monitored soil, leaf, canopy-air, above-canopy-air temperatures and relative humidity of control and treated experimental plots and evaluated ecologically important temperature differentials. Leaves were warmed somewhat less than the target settings (1.1 & 1.5°C day/night) but soil was warmed more creating an average that matched the target settings extremely well both during the day and night plus the summer and winter. The site typically has about 50% bare or litter covered soil, therefore soil heat transfer is more critical than in dense canopy ecosystems. The Wyoming site commonly has strong winds (5 ms-1 average) and significant daily and seasonal temperature fluctuations (as much as 30°C daily) but the warming system was nearly always able to maintain the set temperatures regardless of abiotic variation. The within canopy-air was only slightly warmed and above canopy-air was not warmed by the system, therefore convective warming was minor. Elevated CO2 had no direct effect nor interaction with the warming treatment on microclimate. Relative humidity within the plant canopy was only slightly reduced by warming. Soil water content was reduced by warming but increased by elevated CO2. This study demonstrates the importance of monitoring the microclimate in manipulative field global change experiments so that critical physiological and ecological conclusions can be determined. Highly variable energy demand fluctuations showed that passive IR heater warming systems will not maintain desired warming for much of the time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号