首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1803篇
  免费   149篇
  1952篇
  2023年   6篇
  2022年   24篇
  2021年   27篇
  2020年   20篇
  2019年   26篇
  2018年   43篇
  2017年   28篇
  2016年   49篇
  2015年   77篇
  2014年   77篇
  2013年   129篇
  2012年   140篇
  2011年   135篇
  2010年   100篇
  2009年   90篇
  2008年   138篇
  2007年   121篇
  2006年   110篇
  2005年   110篇
  2004年   101篇
  2003年   90篇
  2002年   80篇
  2001年   10篇
  2000年   15篇
  1999年   19篇
  1998年   23篇
  1997年   16篇
  1996年   12篇
  1995年   11篇
  1994年   15篇
  1993年   13篇
  1992年   11篇
  1991年   10篇
  1990年   10篇
  1989年   7篇
  1988年   11篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1984年   3篇
  1983年   5篇
  1982年   4篇
  1981年   3篇
  1980年   8篇
  1979年   4篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1974年   2篇
  1971年   1篇
排序方式: 共有1952条查询结果,搜索用时 0 毫秒
31.
Death receptor (DR3) 3 is a member of the TNFR superfamily. Its ligand is TNF-like ligand 1A (TL1A), a member of the TNF superfamily. TL1A/DR3 interactions have been reported to modulate the functions of T cells, NK, and NKT cells and play a crucial role in driving inflammatory processes in several T-cell-dependent autoimmune diseases. However, TL1A expression and effects on B cells remain largely unknown. In this study, we described for the first time that B cells from human blood express significant amounts of DR3 in response to B cell receptor polyclonal stimulation. The relevance of these results has been confirmed by immunofluorescence analysis in tonsil and spleen tissue specimens, which showed the in situ expression of DR3 in antigen-stimulated B cells in vivo. Remarkably, we demonstrated that TL1A reduces B-cell proliferation induced by anti-IgM-antibodies and IL-2 but did not affect B-cell survival, suggesting that TL1A inhibits the signal(s) important for B-cell proliferation. These results revealed a novel function of TL1A in modulating B-cell proliferation in vitro and suggest that TL1A may contribute to homeostasis of effector B-cell functions in immune response and host defense, thus supporting the role of the TL1A/DR3 functional axis in modulating the adaptive immune response.  相似文献   
32.

Background and Purpose

Thrombopoietin (TPO), a growth factor primarily involved in thrombopoiesis may also have a role in the pathophysiology of sepsis. In patients with sepsis, indeed, TPO levels are markedly increased, with disease severity being the major independent determinant of TPO concentrations. Moreover, TPO increases and correlates with ex vivo indices of platelet activation in patients with burn injury upon sepsis development, and may contribute to depress cardiac contractility in septic shock. Still, the role of TPO in sepsis pathophysiology remains controversial, given the protective role of TPO in other experimental disease models, for instance in doxorubicin-induced cardiotoxicity and myocardial ischemia/reperfusion injury. The aim of our study was to define the contribution of TPO in the development of organ damage induced by endotoxemia or sepsis, and to investigate the effects of inhibiting TPO in these conditions.

Methods

We synthesized a chimeric protein able to inhibit TPO, mTPOR-MBP, and studied its effect in two murine experimental models, acute endotoxemia and cecal ligation and puncture (CLP) model.

Results

In both models, TPO levels markedly increased, from 289.80±27.87 pg/mL to 465.60±45.92 pg/mL at 3 hours in the LPS model (P<0.01), and from 265.00±26.02 pg/mL to 373.70±26.20 pg/mL in the CLP model (P<0.05), respectively. Paralleling TPO levels, also platelet-monocyte aggregates increased, from 32.86±2.48% to 46.13±1.39% at 3 hours in the LPS model (P<0.01), and from 43.68±1.69% to 56.52±4.66% in the CLP model (P<0.05). Blockade of TPO by mTPOR-MBP administration reduced histological damage in target organs, namely lung, liver, and gut. In particular, neutrophil infiltration and lung septal thickening were reduced from a score of 1.86±0.34 to 0.60±0.27 (P<0.01) and from 1.43±0.37 to 0.40±0.16 (P<0.05), respectively, in the LPS model at 3 hours, and from a score of 1.75±0.37 to 0.38±0.18 (P<0.01) and from 1.25±0.31 to 0.13±0.13 (P<0.001), respectively, in the CLP model. Similarly, the number of hepatic microabscesses was decreased from 14.14±1.41 to 3.64±0.56 in the LPS model at 3 hours (P<0.001), and from 1.71±0.29 to 0.13±0.13 in the CLP model (P<0.001). Finally, the diameter of intestinal villi decreased from 90.69±3.95 μm to 70.74±3.60 μm in the LPS model at 3 hours (P<0.01), and from 74.29±4.29 μm to 57.50±1.89 μm in the CLP model (P<0.01). This protective effect was associated with the blunting of the increase in platelet-monocyte adhesion, and, on the contrary, with increased platelet-neutrophil aggregates in the circulation, which may be related to decreased neutrophil sequestration into the inflamed tissues. Conversely, circulating cytokine levels were not significantly changed, in both models, by mTPOR-MBP administration.

Conclusion

Our results demonstrate that TPO participates in the development of organ damage induced by experimental endotoxemia or polymicrobial sepsis via a mechanism involving increased platelet-leukocyte adhesion, but not cytokine release, and suggest that blocking TPO may be useful in preventing organ damage in patients affected by systemic inflammatory response or sepsis.  相似文献   
33.
34.
Metamorphosis in the ascidian Ciona intestinalis is a very complex process which converts a swimming tadpole to an adult. The process involves reorganisation of the body plan and a remarkable regression of the tail, which is controlled by caspase-dependent apoptosis. However, the endogenous signals triggering apoptosis and metamorphosis are little explored. Herein, we report evidence that nitric oxide (NO) regulates tail regression in a dose-dependent manner, acting on caspase-dependent apoptosis. An increase or decrease of NO levels resulted in a delay or acceleration of tail resorption, without affecting subsequent juvenile development. A similar hastening effect was induced by suppression of cGMP-dependent NO signalling. Inhibition of NO production resulted in an increase in caspase-3-like activity with respect to untreated larvae. Detection of endogenously activated caspase-3 and NO revealed the existence of a spatial correlation between the diminution of the NO signal and caspase-3 activation during the last phases of tail regression. Real-time PCR during development, from early larva to early juveniles, showed that during all stages examined, NO synthase (NOS) is always more expressed than arginase and it reaches the maximum value at late larva, the stage immediately preceding tail resorption. The spatial expression pattern of NOS is very dynamic, moving rapidly along the body in very few hours, from the anterior part of the trunk to central nervous system (CNS), tail and new forming juvenile digestive organs. NO detection revealed free diffusion from the production sites to other cellular districts. Overall, the results of this study provide a new important link between NO signalling and apoptosis during metamorphosis in C. intestinalis and hint at novel roles for the NO signalling system in other developmental and metamorphosis-related events preceding and following tail resorption.  相似文献   
35.
36.
37.
Surveillance of illegal use of steroids hormones in cattle breeding is a key issue to preserve human health. To this purpose, an integrated approach has been developed for the analysis of plasma and urine from calves treated orally with a single dose of a combination of the androgenic steroids boldenone and boldione. A quantitative estimation of steroid hormones was obtained by LC-APCI-Q-MS/MS analysis of plasma and urine samples obtained at various times up to 36 and 24 h after treatment, respectively. These experiments demonstrated that boldione was never found, while boldenone alpha- and beta-epimers were detected in plasma and urine only within 2 and 24 h after drug administration, respectively. Parallel proteomic analysis of plasma samples was obtained by combined 2-DE, MALDI-TOF-MS and muLC-ESI-IT-MS/MS procedures. A specific protein, poorly represented in normal plasma samples collected before treatment, was found upregulated even 36 h after hormone treatment. Extensive mass mapping experiments proved this component as an N-terminal truncated form of apolipoprotein A1 (ApoA1), a protein involved in cholesterol transport. The expression profile of ApoA1 analysed by Western blot analysis confirmed a significant and time dependent increase of this ApoA1 fragment. Then, provided that further experiments performed with a growth-promoting schedule will confirm these preliminary findings, truncated ApoA1 may be proposed as a candidate biomarker for steroid boldenone and possibly other anabolic androgens misuse in cattle veal calves, when no traces of hormones are detectable in plasma or urine.  相似文献   
38.
39.
40.
The enantiomers of two α-tropanyl esters, SM21 (1) and PG9 (2), derived from (+)-R-hyoscyamine, that act by increasing the central cholinergic tone, were obtained by esterification after resolution of the corresponding racemic acids [(−)-S-1, (−)-R-2 and (+)-S-2] and by stereospecific synthesis [(+)-R-1]. Their analgesic and cognition-enhancing activities were tested in mice and their ACh-releasing properties determined on rat parietal cortex. These compounds show enantioselectivity in analgesic and cognition-enhancing tests on mice, the eutomers being the isomers which possess the same spatial arrangement of the groups on the chiral atom as (+)-R hyoscyamine [(+)-R-SM21, (+)-S-PG9]. The ACh-releasing effect of the enantiomers of SM21 in rats is in agreement with the results in mice, while PG9 enantiomers do not show any appreciable enantioselectivity in this test. On the basis of the different effects of the 5-HT4 antagonist SDZ 205557 on analgesia induced by the enantiomers of 1 and 2 and by (+)-R-hyoscyamine and the α-tropanyl ester of 2-phenylpropionic acid 3, a mechanism of action is proposed for this class of compounds. © 1996 Wiley-Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号