首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1803篇
  免费   146篇
  2023年   6篇
  2022年   24篇
  2021年   27篇
  2020年   20篇
  2019年   26篇
  2018年   43篇
  2017年   28篇
  2016年   48篇
  2015年   79篇
  2014年   77篇
  2013年   131篇
  2012年   140篇
  2011年   135篇
  2010年   100篇
  2009年   91篇
  2008年   139篇
  2007年   122篇
  2006年   111篇
  2005年   111篇
  2004年   101篇
  2003年   89篇
  2002年   80篇
  2001年   10篇
  2000年   14篇
  1999年   19篇
  1998年   23篇
  1997年   16篇
  1996年   12篇
  1995年   10篇
  1994年   15篇
  1993年   13篇
  1992年   10篇
  1991年   10篇
  1990年   9篇
  1989年   7篇
  1988年   6篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1984年   3篇
  1983年   5篇
  1982年   4篇
  1981年   3篇
  1980年   8篇
  1979年   4篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1974年   2篇
  1972年   1篇
排序方式: 共有1949条查询结果,搜索用时 15 毫秒
201.
Ullu E  Lujan HD  Tschudi C 《Eukaryotic cell》2005,4(6):1155-1157
Sequencing of a library of small RNAs from Giardia intestinalis identified a novel class of small sense and antisense RNAs homologous to the retroposon family GilT/Genie1 that is located at certain telomeres. These small RNAs may contribute to silencing GilT expression via the RNA interference pathway.  相似文献   
202.
We present reference maps of the mouse serum proteome (run under reducing and non-reducing conditions), from control animals, from mice injected with lipopolysaccharide (LPS) to induce systemic inflammation, and from mice transgenic for human apolipoproteins A-I and A-II. Seventy-seven spots/spot chains from the reducing gels were identified by HPLC MS/MS, representing 28 distinct proteins, including a species-specific protease inhibitor, contrapsin, and high levels of carboxylesterase. The concentrations of acute-phase reactants were monitored for 96 h after LPS challenge. The greatest changes (four-fold 48 h after LPS administration) were observed for haptoglobin and hemopexin. Orosomucoid/alpha(1)-acid glycoprotein and apolipoprotein A-I increased steadily, to 50-60% above baseline at 96 h from stimulation. In mice transgenic for human apolipoprotein A-I the levels of expression of orosomucoid/alpha(1)-acid glycoprotein, alpha(1)-macroglobulin, esterase, kininogen and contrapsin were altered compared to knockout mice lacking apolipoprotein A-I. In contrast, except for the presence of apolipoprotein A-II, no statistically significant difference was observed in mice transgenic for human apolipoprotein A-II.  相似文献   
203.
Topoisomerase (topo) IV and gyrase are bacterial type IIA DNA topoisomerases essential for DNA replication and chromosome segregation that act via a transient double-stranded DNA break involving a covalent enzyme-DNA "cleavage complex." Despite their mechanistic importance, the DNA breakage determinants are not understood for any bacterial type II enzyme. We investigated DNA cleavage by Streptococcus pneumoniae topo IV and gyrase stabilized by gemifloxacin and other antipneumococcal fluoroquinolones. Topo IV and gyrase induce distinct but overlapping repertoires of double-strand DNA breakage sites that were essentially identical for seven different quinolones and were augmented (in intensity) by positive or negative supercoiling. Sequence analysis of 180 topo IV and 126 gyrase sites promoted by gemifloxacin on pneumococcal DNA revealed the respective consensus sequences: G(G/c)(A/t)A*GNNCt(T/a)N(C/a) and GN4G(G/c)(A/c)G*GNNCtTN(C/a) (preferred bases are underlined; disfavored bases are in small capitals; N indicates no preference; and asterisk indicates DNA scission between -1 and +1 positions). Both enzymes show strong preferences for bases clustered symmetrically around the DNA scission site, i.e. +1G/+4C, -4G/+8C, and particularly the novel -2A/+6T, but with no preference at +2/+3 within the staggered 4-bp overhang. Asymmetric elements include -3G and several unfavored bases. These cleavage preferences, the first for Gram-positive type IIA topoisomerases, differ markedly from those reported for Escherichia coli topo IV (consensus (A/G)*T/A) and gyrase, which are based on fewer sites. However, both pneumococcal enzymes cleaved an E. coli gyrase site suggesting overlap in gyrase determinants. We propose a model for the cleavage complex of topo IV/gyrase that accommodates the unique -2A/+6T and other preferences.  相似文献   
204.
The structure and function of Mycobacterium smegmatis Dps (DNA-binding proteins from starved cells) and of the protein studied by Gupta and Chatterji, in which the C terminus that is used for binding DNA contains a histidine tag, have been characterized in parallel. The native dodecamer dissociated reversibly into dimers above pH 7.5 and below pH 6.0, with apparent pK(a) values of approximately 7.65 and 4.75; at pH approximately 4.0, dimers formed monomers. Based on structural analysis, the two dissociation steps have been attributed to breakage of the salt bridges between Glu(157) and Arg(99) located at the 3-fold symmetry axes and to protonation of Asp(66) hydrogen-bonded to Lys(36) across the dimer interface, respectively. The C-terminal tag did not affect subunit dissociation, but altered DNA binding dramatically. At neutral pH, protonation of the histidine tag promoted DNA condensation, whereas in the native C terminus, compensation of negative and positive charges led to DNA binding without condensation. This different mode of interaction with DNA has important functional consequences as indicated by the failure of the native protein to protect DNA from DNase-mediated cleavage and by the efficiency of the tagged protein in doing so as a result of DNA sequestration in the condensates. Chemical protection of DNA from oxidative damage is realized by Dps proteins in a multistep iron oxidation/uptake/mineralization process. Dimers have a decreased protection efficiency due to disruption of the dodecamer internal cavity, where iron is deposited and mineralized after oxidation at the ferroxidase center.  相似文献   
205.
Cell adhesive and rheological properties play a very important role in cell transmigration through the endothelial barrier, in particular in the case of inflammation (leukocytes) or cancer metastasis (cancer cells). In order to characterize cell viscoelastic properties, we have designed a force spectrometer (AFM) which can stretch cells thereby allowing measurement of their rheological properties. This custom-made force spectrometer allows two different visualizations, one lateral and one from below. It allows investigation of the effects of rheology involved during cell stretching. To test the ability of our system to characterize such viscoelastic properties, ICAM-1 transfected CHO cells were analyzed. Two forms of ICAM-1 were tested; wild type ICAM-1, which can interact with the cytoskeleton, and a mutant form which lacks the cytoplasmic domain, and is unable to associate with the cytoskeleton. Stretching experiments carried out on these cells show the formation of long filaments. Using a previous model of filament elongation, we could determine the viscoelastic properties of a single cell. As expected, different viscoelastic components were found between the wild type and the mutant, which reveal that the presence of interactions between ICAM-1 and the cytoskeleton increases the stiffness of the cell.  相似文献   
206.
Poly(ADP-ribose)polymerase (PARP-1), a nuclear enzyme activated by DNA strand breaks, is involved in DNA repair, aging, inflammation, and neoplastic transformation. In diabetes, reactive oxygen and nitrogen species occurring in response to hyperglycemia cause DNA damages and PARP-1 activation. Because circulating mononuclear cells (MNCs) are involved in inflammation mechanisms, these cells were chosen as the experimental model to evaluate PARP-1 levels and activity in patients with type 2 diabetes. MNCs were isolated from 25 diabetic patients (18 M, 7 F, age, 63.5 +/- 10.2 years, disease duration 17.7 +/- 8.2 years) and 11 age and sex matched healthy controls. PARP-1 expression and activity were analyzed by semi-quantitative PCR, Western and activity blot, and immunofluorescence microscopy. PARP-1-mRNA expression was increased in MNCs from all diabetic patients versus controls (P < 0.01), whereas PARP-1 content and activity were significantly lower in diabetic patients (P < 0.0001). To verify whether low PARP-1 levels and activity were due to a proteolytic effect of caspase-3 like, the latter activation was measured by a fluorimetric assay. Caspase-3 activity in MNCs was significantly higher in diabetic patients versus control subjects (P < 0.0001). The different PARP-1 behavior in MNCs from patients with type 2 diabetes could therefore be responsible for the abnormal inflammation and infection responses in diabetes.  相似文献   
207.
208.
Activins and inhibins compose a heterogeneous subfamily within the transforming growth factor-beta (TGF-beta) superfamily of growth and differentiation factors with critical biological activities in embryos and adults. They signal through a heteromeric complex of type II, type I, and for inhibin, type III receptors. To characterize the affinity, specificity, and activity of these receptors (alone and in combination) for the inhibin/activin subfamily, we developed a cell-free assay system using soluble receptor-Fc fusion proteins. The soluble activin type II receptor (sActRII)-Fc fusion protein had a 7-fold higher affinity for activin A compared with sActRIIB-Fc, whereas both receptors had a marked preference for activin A over activin B. Although inhibin A and B binding was 20-fold lower compared with activin binding to either type II receptor alone, the mixture of either type II receptor with soluble TGF-beta type III receptor (TbetaRIII; betaglycan)-Fc reconstituted a soluble high affinity inhibin receptor. In contrast, mixing either soluble activin type II receptor with soluble activin type I receptors did not substantially enhance activin binding. Our results support a cooperative model of binding for the inhibin receptor (ActRII.sTbetaRIII complex) but not for activin receptors (type II + type I) and demonstrate that a complex composed of activin type II receptors and TbetaRIII is both necessary and sufficient for high affinity inhibin binding. This study also illustrates the utility of this cell-free system for investigating hypotheses of receptor complex mechanisms resulting from crystal structure analyses.  相似文献   
209.
Argonaute proteins are central components of RNA interference (RNAi) and related phenomena in a wide variety of eukaryotes, including the early diverging protozoan Trypanosoma brucei. The single T. brucei Argonaute protein (TbAGO1) is in a complex with small interfering RNAs (siRNAs), and a fraction of this ribonucleoprotein particle is associated with polyribosomes. In this study, we generated a panel of insertion, deletion, and single point mutants of TbAGO1 and assayed them in vivo for their function in RNAi. In addition to the signature domains of Argonaute proteins, PAZ and Piwi, TbAGO1 has an N-terminal domain with a high abundance of RGG repeats. Deletion of the N-terminal domain blocked association of AGO1 with polyribosomes and severely affected mRNA cleavage. Nevertheless, the mutant protein was in a complex with siRNAs. In contrast, deletion of the Piwi domain led to a loss of siRNAs but did not abolish polyribosome association. Site-directed mutagenesis of conserved amino acids in the Piwi domain identified arginine 735 as essential for RNAi. Although the R735A mutant bound siRNAs and associated with polyribosomes, it displayed a severe defect in the cleavage of target mRNA.  相似文献   
210.
The CD95 (Fas/APO-1) linkage to the actin cytoskeleton through ezrin is an essential requirement for susceptibility to the CD95-mediated apoptosis in CD4+ T cells. We have previously shown that moesin was not involved in the binding to CD95. Here we further support the specificity of the ezrin/CD95 binding, showing that radixin did not bind CD95. The ezrin region specifically and directly involved in the binding to CD95 was located in the middle lobe of the ezrin FERM domain, between amino acids 149 and 168. In this region, ezrin, radixin, and moesin show 60-65% identity, as compared with the 86% identity in the whole FERM domain. Transfection of two different human cell lines with a green fluorescent protein-tagged ezrin mutated in the CD95-binding epitope, induced a marked inhibition of CD95-mediated apoptosis. In these cells, the mutated ezrin did not co-localize or co-immunoprecipitate with CD95. Further analysis showed that the mutated ezrin, while unable to bind CD95, was fully able to bind actin, thus preventing the actin linkage to CD95. Altogether, our results support the specificity of ezrin in the association to CD95 and the importance of the ezrin-to-CD95 linkage in CD95-mediated apoptosis. Moreover, this study suggests that a major role of ezrin is to connect CD95 to actin, thus allowing the CD95 polarization on the cells and the occurrence of the following multiple cascades of the CD95 pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号