首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9488篇
  免费   830篇
  2022年   63篇
  2021年   142篇
  2020年   78篇
  2019年   88篇
  2018年   134篇
  2017年   101篇
  2016年   201篇
  2015年   360篇
  2014年   391篇
  2013年   487篇
  2012年   592篇
  2011年   547篇
  2010年   362篇
  2009年   334篇
  2008年   444篇
  2007年   447篇
  2006年   407篇
  2005年   419篇
  2004年   418篇
  2003年   385篇
  2002年   367篇
  2001年   190篇
  2000年   147篇
  1999年   166篇
  1998年   129篇
  1997年   111篇
  1996年   108篇
  1995年   108篇
  1994年   90篇
  1993年   81篇
  1992年   121篇
  1991年   116篇
  1990年   96篇
  1989年   101篇
  1988年   105篇
  1987年   126篇
  1986年   88篇
  1985年   109篇
  1984年   92篇
  1983年   68篇
  1982年   60篇
  1981年   79篇
  1980年   64篇
  1979年   96篇
  1978年   72篇
  1977年   66篇
  1974年   66篇
  1972年   60篇
  1970年   61篇
  1969年   57篇
排序方式: 共有10000条查询结果,搜索用时 875 毫秒
891.
892.
Inorganic phosphate (Pi) is one of the most limiting nutrients for plant growth in both natural and agricultural contexts. Pi‐deficiency leads to a strong decrease in shoot growth, and triggers extensive changes at the developmental, biochemical and gene expression levels that are presumably aimed at improving the acquisition of this nutrient and sustaining growth. The Arabidopsis thaliana PHO1 gene has previously been shown to participate in the transport of Pi from roots to shoots, and the null pho1 mutant has all the hallmarks associated with shoot Pi deficiency. We show here that A. thaliana plants with a reduced expression of PHO1 in roots have shoot growth similar to Pi‐sufficient plants, despite leaves being strongly Pi deficient. Furthermore, the gene expression profile normally triggered by Pi deficiency is suppressed in plants with low PHO1 expression. At comparable levels of shoot Pi supply, the wild type reduces shoot growth but maintains adequate shoot vacuolar Pi content, whereas the PHO1 underexpressor maintains maximal growth with strongly depleted Pi reserves. Expression of the Oryza sativa (rice) PHO1 ortholog in the pho1 null mutant also leads to plants that maintain normal growth and suppression of the Pi‐deficiency response, despite the low shoot Pi. These data show that it is possible to unlink low shoot Pi content with the responses normally associated with Pi deficiency through the modulation of PHO1 expression or activity. These data also show that reduced shoot growth is not a direct consequence of Pi deficiency, but is more likely to be a result of extensive gene expression reprogramming triggered by Pi deficiency.  相似文献   
893.
Erwinia amylovora is responsible for fire blight of apple and pear trees. Its pathogenicity depends on a type III secretion system (T3SS) mediating the translocation of effectors into the plant cell. The DspA/E effector suppresses callose deposition on apple leaves. We found that E. amylovora and Pseudomonas syringae DC3000 tts mutants or peptide flg22 do not trigger callose deposition as strongly as the dspA/E mutant on apple leaves. This suggests that, on apple leaves, callose deposition is poorly elicited by pathogen-associated molecular patterns (PAMPs) such as flg22 or other PAMPs harbored by tts mutants and is mainly elicited by injected effectors or by the T3SS itself. Callose elicitation partly depends on HrpW because an hrpW-dspA/E mutant elicits lower callose deposition than a dspA/E mutant. Furthermore, an hrpN-dspA/E mutant does not trigger callose deposition, indicating that HrpN is required to trigger this plant defense reaction. We showed that HrpN plays a general role in the translocation process. Thus, the HrpN requirement for callose deposition may be explained by its role in translocation: HrpN could be involved in the translocation of other effectors inducing callose deposition. Furthermore, HrpN may also directly contribute to the elicitation process because we showed that purified HrpN induces callose deposition.  相似文献   
894.
This work presents biodiesel production from soybean oil and bioethanol by multiple-stage Ultra-Shear reactor (USR). The experiments were carried out in the following conditions: reaction time from 6 to 12 min; catalyst concentration from 0.5% to 1.5% by weight of soybean oil; ethanol: soybean oil molar ratio from 6:1 to 10:1. The experimental design was used to investigate the influence of process variables on the conversion in biodiesel. The best ethyl ester conversion obtained was 99.26 wt.%, with ethanol:soybean oil molar ratio of 6:1, catalyst concentration of 1.35% and with 12 min of reaction time.  相似文献   
895.
The identification of a Sonic Hedgehog (Shh) signaling pathway in the adult vertebrate central nervous system has paved the way to the characterization of the functional roles of Shh signals in normal and diseased brain. This morphogen is proposed to play a key role in the establishment and maintenance of adult neurogenic niches and to modulate the proliferation of neuronal or glial precursors. Consistent with its role during embryogenesis, alteration of Shh signaling is associated with tumorigenesis while its recruitment in damaged neural tissue might be part of the regenerating process. We will discuss the most recent data of the Hedgehog pathway in the adult brain and its relevance as a novel therapeutic approach for brain diseases including brain tumors.  相似文献   
896.
Throughout development cells make the decision to proliferate, arrest or die. Control of this process is essential for normal development, with unrestrained cell proliferation and cell death underling the origin and progression of disease. The cell-cycle is tightly regulated by a number of factors including the cyclin-dependent kinase inhibitor 1A (Cdkn1a), termed p21 (or Cip1 or WAF1). p21 acts as a negative regulator of cell-cycle progression by binding and inhibiting complexes formed between the cyclin-dependent kinases and their catalytic partners the cyclins. In this report we identify the temporal spatial expression profile of p21 in the developing mid-term mouse embryo using a p21-LacZ reporter mouse line. Expression of p21 was restricted to specific regions with a correspondence to both areas of terminal differentiation and active remodelling. A complex temporal and spatial relationship between p21 expression and regions of apoptosis was evident. A protective role with regard to apoptosis for p21 is proposed.  相似文献   
897.
The RootChip: an integrated microfluidic chip for plant science   总被引:1,自引:0,他引:1  
Studying development and physiology of growing roots is challenging due to limitations regarding cellular and subcellular analysis under controlled environmental conditions. We describe a microfluidic chip platform, called RootChip, that integrates live-cell imaging of growth and metabolism of Arabidopsis thaliana roots with rapid modulation of environmental conditions. The RootChip has separate chambers for individual regulation of the microenvironment of multiple roots from multiple seedlings in parallel. We demonstrate the utility of The RootChip by monitoring time-resolved growth and cytosolic sugar levels at subcellular resolution in plants by a genetically encoded fluorescence sensor for glucose and galactose. The RootChip can be modified for use with roots from other plant species by adapting the chamber geometry and facilitates the systematic analysis of root growth and metabolism from multiple seedlings, paving the way for large-scale phenotyping of root metabolism and signaling.  相似文献   
898.
Model organisms like the mouse are important tools to learn more about gene function in man. Within the last 20 years many mutant mouse lines have been generated by different methods such as ENU mutagenesis, constitutive and conditional knock-out approaches, knock-down, introduction of human genes, and knock-in techniques, thus creating models which mimic human conditions. Due to pleiotropic effects, one gene may have different functions in different organ systems or time points during development. Therefore mutant mouse lines have to be phenotyped comprehensively in a highly standardized manner to enable the detection of phenotypes which might otherwise remain hidden. The German Mouse Clinic (GMC) has been established at the Helmholtz Zentrum München as a phenotyping platform with open access to the scientific community (www.mousclinic.de; [1]). The GMC is a member of the EUMODIC consortium which created the European standard workflow EMPReSSslim for the systemic phenotyping of mouse models (http://www.eumodic.org/ [2]).  相似文献   
899.

Introduction  

Identifying ankylosing spondylitis (AS) patients who are likely to benefit from tumor necrosis factor-alpha (TNF-α) blocking therapy is important, especially in view of the costs and potential side effects of these agents. Recently, the AS Disease Activity Score (ASDAS) has been developed to assess both subjective and objective aspects of AS disease activity. However, data about the predictive value of the ASDAS with respect to clinical response to TNF-α blocking therapy are lacking. The aim of the present study was to identify baseline predictors of response and discontinuation of TNF-α blocking therapy in AS patients in daily clinical practice.  相似文献   
900.
Systemic administration of Salmonella enterica serovar Typhimurium to tumour bearing mice results in preferential colonization of the tumours and retardation of tumour growth. Although the bacteria are able to invade the tumour cells in vitro, in tumours they were never detected intracellularly. Ultrastructural analysis of Salmonella-colonized tumours revealed that the bacteria had formed biofilms. Interestingly, depletion of neutrophilic granulocytes drastically reduced biofilm formation. Obviously, bacteria form biofilms in response to the immune reactions of the host. Importantly, we tested Salmonella mutants that were no longer able to form biofilms by deleting central regulators of biofilm formation. Such bacteria could be observed intracellularly in immune cells of the host or in tumour cells. Thus, tumour colonizing S. typhimurium might form biofilms as protection against phagocytosis. Since other bacteria are behaving similarly, solid murine tumours might represent a unique model to study biofilm formation in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号