首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7974篇
  免费   582篇
  国内免费   1篇
  2022年   40篇
  2021年   114篇
  2020年   58篇
  2019年   81篇
  2018年   132篇
  2017年   112篇
  2016年   205篇
  2015年   351篇
  2014年   394篇
  2013年   469篇
  2012年   556篇
  2011年   520篇
  2010年   353篇
  2009年   273篇
  2008年   411篇
  2007年   391篇
  2006年   355篇
  2005年   384篇
  2004年   366篇
  2003年   326篇
  2002年   288篇
  2001年   142篇
  2000年   125篇
  1999年   125篇
  1998年   95篇
  1997年   65篇
  1996年   74篇
  1995年   81篇
  1994年   73篇
  1993年   69篇
  1992年   84篇
  1991年   77篇
  1990年   79篇
  1989年   68篇
  1988年   81篇
  1987年   67篇
  1986年   61篇
  1985年   53篇
  1984年   62篇
  1983年   45篇
  1982年   44篇
  1981年   37篇
  1980年   34篇
  1979年   53篇
  1977年   47篇
  1976年   36篇
  1971年   33篇
  1970年   31篇
  1969年   36篇
  1968年   33篇
排序方式: 共有8557条查询结果,搜索用时 234 毫秒
991.
Species form the fundamental units of analysis in many areas of biology and, therefore, rigorous delimitation of this unit is important to a broad array of researchers. Recently, many new empirical methods have been proposed to delimit species in nature, and a large literature exists on the theoretical merit and superiority of each method. However, few empirical studies actually compare the results of these methods applied in the same study system. We used a large allozyme and chromosome dataset to apply a number of genetic-distance, character-based, and tree-based methods to a well-studied, data-rich system: the Sceloporus grammicus lizard complex of central Mexico. We hypothesized species boundaries under a general lineage or evolutionary species conceptual framework in an a priori fashion using mapped restriction-site data (mitochondrial DNA and nuclear rDNA), allozymes, and morphology. We then compared the ability of different methods to recover the "hypothesized evolutionary species" (HES). Highton's genetic-distance method and a tree-based method consistently recovered all four HES, although sometimes with weak support. With two exceptions, other methods recovered the same HES, but additional groups were weakly delimited and nested within the HES. Given the apparent recent divergence of some of the chromosome races and distinct populations in this complex, these are encouraging results. We emphasize the value of specifying testable criteria as clearly as possible and testing these with methods that make use of different properties of a single dataset.  相似文献   
992.
Using the mouse as a model organism in pharmaceutical research presents unique advantages as its physiology in many ways resembles the human physiology, it also has a relatively short generation time, low breeding and maintenance costs, and is available in a wide variety of inbred strains. The ability to genetically modify mouse embryonic stem cells to generate mouse models that better mimic human disease is another advantage. In the present study, a comprehensive phenotypic screening protocol is applied to elucidate the phenotype of a novel mouse knockout model of hepatocyte nuclear factor (HNF) 4-gamma. HNF4-gamma is expressed in the kidneys, gut, pancreas, and testis. The first level of the screen is aimed at general health, morphologic appearance, normal cage behaviour, and gross neurological functions. The second level of the screen looks at metabolic characteristics and lung function. The third level of the screen investigates behaviour more in-depth and the fourth level consists of a thorough pathological characterisation, blood chemistry, haematology, and bone marrow analysis. When compared with littermate wild-type mice (HNF4-gamma(+/+)), the HNF4-gamma knockout (HNF4-gamma(-/-)) mice had lowered energy expenditure and locomotor activity during night time that resulted in a higher body weight despite having reduced intake of food and water. HNF4-gamma(-/-) mice were less inclined to build nest and were found to spend more time in a passive state during the forced swim test.  相似文献   
993.
Defects in major histocompatibility complex (MHC) class I-restricted antigen presentation are frequently observed in human cancers and result in escape of tumors from cytotoxic T lymphocyte (CTL) immune surveillance in mice. Here, we show the existence of a unique category of CTLs that can prevent this escape. The CTLs target an alternative repertoire of peptide epitopes that emerge in MHC class I at the surface of cells with impaired function of transporter associated with antigen processing (TAP), tapasin or the proteasome. These peptides, although derived from self antigens such as the commonly expressed Lass5 protein (also known as Trh4), are not presented by normal cells. This explains why they act as immunogenic neoantigens. The newly discovered epitopes can be exploited for immune intervention against processing-deficient tumors through adoptive T-cell transfer or peptide vaccination.  相似文献   
994.
The adhesion of primary chondrocytes to polyelectrolyte multilayer films, made of poly(l-lysine) (PLL) and hyaluronan (HA), was investigated for native and crosslinked films, either ending by PLL or HA. Crosslinking the film was achieved by means of a water-soluble carbodiimide in combination with N-hydroxysulfosuccinimide. The adhesion of macrophages and primary chondrocytes was investigated by microscopical techniques (optical, confocal, and atomic), providing useful information on the cell/film interface. Native films were found to be nonadhesive for the, primary chondrocytes, but could be degraded by macrophages, as could be visualized by confocal laser scanning microscopy after film labeling. Confocal microscopy images show that these films can be deformed by the condrocytes and that PLL diffuses at the chondrocyte membrane. In contrast, the cells adhered and proliferated well on the crosslinked films, which were not degraded by the macrophages. These results were confirmed by a MTT test over a 6-d period and by atomic force microscopy observations. We thus prove that chemical crosslinking can dramatically change cell adhesion properties, the cells being more stably anchored on the crosslinked films. Both authors kcontributed equally.  相似文献   
995.
Metabolic pathway analysis was carried out to predict the metabolic potential of Corynebacterium glutamicum and Escherichia coli for the production of L-methionine. Based on detailed stoichiometric models for these organisms, this allowed the calculation of the theoretically optimal methionine yield and related metabolic fluxes for various scenarios involving different mutants and process conditions. The theoretical optimal methionine yield on the substrates glucose, sulfate and ammonia for the wildtype of C. glutamicum is 0.49 (C-mol) (C-mol)(-1), whereas the E. coli wildtype exhibits an even higher potential of 0.52 (C-mol) (C-mol)(-1). Both strains showed completely different optimal flux distributions. C. glutamicum has a high flux through the pentose phosphate pathway (PPP), whereas the TCA cycle flux is very low. Additionally, it recruits a metabolic cycle, which involves 2-oxoglutarate and glutamate. In contrast, E. coli does minimize the flux through the PPP, and the flux through the TCA cycle is high. The improved potential of the E. coli wildtype is due to its membrane-bound transhydrogenase and its glycine cleavage system as shown by additional simulations with theoretical mutants. A key point for maximizing methionine yield is the choice of the sulfur source. Replacing sulfate by thiosulfate or sulfide increased the maximal theoretical yield in C. glutamicum up to 0.68 (C-mol) (C-mol)(-1). A further increase is possible by the application of additional C1 sources. The highest theoretical potential was obtained for C. glutamicum applying methanethiol as combined source for C1 carbon and sulfur (0.91 (C-mol) (C-mol)(-1)). Substrate requirement for maintenance purposes reduces theoretical methionine yields. In the case of sulfide used as sulfur source a maintenance requirement of 9.2 mmol ATP g(-1) h(-1), as was observed under stress conditions, would reduce the maximum theoretical yield from 67.8% to 47% at a methionine production rate of 0.65 mmol g(-1) h(-1). The enormous capability of both organisms encourages the development of biotechnological methionine production, whereby the use of metabolic pathway analysis, as shown, provides valuable advice for future strategies in strain and process improvement.  相似文献   
996.
Mammalian herbivores can have pronounced effects on plant diversity but are currently declining in many productive ecosystems through direct extirpation, habitat loss and fragmentation, while being simultaneously introduced as livestock in other, often unproductive, ecosystems that lacked such species during recent evolutionary times. The biodiversity consequences of these changes are still poorly understood. We experimentally separated the effects of primary productivity and herbivores of different body size on plant species richness across a 10-fold productivity gradient using a 7-year field experiment at seven grassland sites in North America and Europe. We show that assemblages including large herbivores increased plant diversity at higher productivity but decreased diversity at low productivity, while small herbivores did not have consistent effects along the productivity gradient. The recognition of these large-scale, cross-site patterns in herbivore effects is important for the development of appropriate biodiversity conservation strategies.  相似文献   
997.
Sulfate reduction accounts for about a half of the remineralization of organic carbon in anoxic marine shelf regions. Moreover, it was already a major microbial process in the very early ocean at least 2.4 billion years before the present. Here we demonstrate for the first time the capability of sulfate-reducing bacteria (SRB) to biosynthesize hopanoids, compounds that are quantitatively important and widely distributed biomarkers in recent and fossil sediments dating back to the late Archean. We found high concentrations (9.8-12.3 mg per gram of dry cells) of non-extended and extended bacteriohopanoids (bacteriohopanetetrol, aminobacteriohopanetriol, aminobacteriohopanetetrol) in pure cultures of SRB belonging to the widely distributed genus Desulfovibrio. Biohopanoids were found--considered as membrane rigidifiers--in more than 50% of bacterial species analysed so far. However, their biosynthesis appeared to be restricted to aerobes or facultative anaerobes with a very few recently described exceptions. Consequently, findings of sedimentary hopanoids are often used as indication for oxygenated settings. Nevertheless, our findings shed new light on the presence of hopanoids in specific anoxic settings and suggests that SRB are substantial sources of this quantitatively important lipid class in recent but also past anoxic environments.  相似文献   
998.

Background  

There have been many algorithms and software programs implemented for the inference of multiple sequence alignments of protein and DNA sequences. The "true" alignment is usually unknown due to the incomplete knowledge of the evolutionary history of the sequences, making it difficult to gauge the relative accuracy of the programs.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号