首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5018篇
  免费   370篇
  2023年   12篇
  2022年   38篇
  2021年   93篇
  2020年   41篇
  2019年   56篇
  2018年   78篇
  2017年   62篇
  2016年   135篇
  2015年   249篇
  2014年   260篇
  2013年   319篇
  2012年   372篇
  2011年   340篇
  2010年   233篇
  2009年   195篇
  2008年   279篇
  2007年   274篇
  2006年   252篇
  2005年   267篇
  2004年   263篇
  2003年   219篇
  2002年   202篇
  2001年   51篇
  2000年   40篇
  1999年   49篇
  1998年   67篇
  1997年   54篇
  1996年   50篇
  1995年   56篇
  1994年   53篇
  1993年   47篇
  1992年   33篇
  1991年   36篇
  1990年   26篇
  1989年   30篇
  1988年   35篇
  1987年   32篇
  1986年   25篇
  1985年   24篇
  1984年   30篇
  1983年   21篇
  1982年   17篇
  1981年   24篇
  1980年   19篇
  1979年   25篇
  1977年   28篇
  1976年   20篇
  1971年   14篇
  1959年   14篇
  1954年   11篇
排序方式: 共有5388条查询结果,搜索用时 31 毫秒
981.
Diglyceride kinase was purified from membranes of Escherichia coli K-12 using organic solvents. The enzyme apoprotein depended on lipids, such as cardiolipin (diphosphatidylglycerol), phosphatidylcholine or 1-monooleoylglycerol, for activity with 1,2-dipalmitoylglycerol. Mixed brain cerebrosides and gangliosides as well as defined ganglioside fractions and synthetic lactocerebroside were devoid of lipid cofactor activity. However, all these glycosphingolipids were strong inhibitors of activation by phosphatidylcholine. When cardiolipin was used as lipid activator with the detergent, Triton X-100, as solubilizing agent, the addition of mixed or purified gangliosides first (at about 0.4 mM) resulted in additional activation, but higher ganglioside concentrations were strongly inhibitory. Both effects were absolutely dependent on the presence of lipid-bound sialic acid and were not given by cerebrosides, by free sialic acid or by sialyl-lactose. The stimulating and inhibitory effects of glycosphingolipids could also be demonstrated when 1-monooleoylglycerol was used as substrate, lipid activator and solubilizing agent at the same time. The modulation of kinase activity by glycosphingolipids is discussed at the level of lipid/protein interactions.  相似文献   
982.
A yeast strain isolated from the hindgut of the lower termite Mastotermes darwiniensis (Mastotermitidae) was found to represent a new member of the genus Trichosporon. Trichosporon mycotoxinivorans is closely related to T. loubieri on the basis of the phylogenetic trees based on the D1/D2 region of 26S rDNA, an approx. 600 bp fragment of the 18S rDNA and both ITS regions. However, the two species differ at nine positions in the D1/D2 region of 26S rDNA. The IGS1 region of T. mycotoxinivorans is 401 bp long. T. mycotoxinivorans is distinguished from T. loubieri by its ability to assimilate inulin and galactitol, and its inability to grow at 40 °C. The name of this newly isolated strain refers to an important characteristics of T. mycotoxinivorans to detoxify mycotoxins such as ochratoxin A and zearalenone. Therefore this strain can be used for the deactivation of the respective mycotoxins in animal feeds.  相似文献   
983.
Recently, there have been several studies using open top chambers (OTCs) or cloches to examine the response of Arctic plant communities to artificially elevated temperatures. Few, however, have investigated multitrophic systems, or the effects of both temperature and vertebrate grazing treatments on invertebrates. This study investigated trophic interactions between an herbivorous insect (Sitobion calvulum, Aphididae), a woody perennial host plant (Salix polaris) and a selective vertebrate grazer (barnacle geese, Branta leucopsis). In a factorial experiment, the responses of the insect and its host to elevated temperatures using open top chambers (OTCs) and to three levels of goose grazing pressure were assessed over two summer growing seasons (2004 and 2005). OTCs significantly enhanced the leaf phenology of Salix in both years and there was a significant OTC by goose presence interaction in 2004. Salix leaf number was unaffected by treatments in both years, but OTCs increased leaf size and mass in 2005. Salix reproduction and the phenology of flowers were unaffected by both treatments. Aphid densities were increased by OTCs but unaffected by goose presence in both years. While goose presence had little effect on aphid density or host plant phenology in this system, the OTC effects provide interesting insights into the possibility of phenological synchrony disruption. The advanced phenology of Salix effectively lengthens the growing season for the plant, but despite a close association with leaf maturity, the population dynamics of the aphid appeared to lack a similar phenological response, except for the increased population observed.  相似文献   
984.
The enzyme geranylgeranyl reductase (CHL P) catalyzes the reduction of geranylgeranyl diphosphate to phytyl diphosphate. We identified a tobacco (Nicotiana tabacum) cDNA sequence encoding a 52-kD precursor protein homologous to the Arabidopsis and bacterial CHL P. The effects of deficient CHL P activity on chlorophyll (Chl) and tocopherol contents were studied in transgenic plants expressing antisense CHL P RNA. Transformants with gradually reduced Chl P expression showed a delayed growth rate and a pale or variegated phenotype. Transformants grown in high (500 μmol m−2 s−1; HL) and low (70 μmol photon m−2 s−1; LL) light displayed a similar degree of reduced tocopherol content during leaf development, although growth of wild-type plants in HL conditions led to up to a 2-fold increase in tocopherol content. The total Chl content was more rapidly reduced during HL than LL conditions. Up to 58% of the Chl content was esterified with geranylgeraniol instead of phytol under LL conditions. Our results indicate that CHL P provides phytol for both tocopherol and Chl synthesis. The transformants are a valuable model with which to investigate the adaptation of plants with modified tocopherol levels against deleterious environmental conditions.  相似文献   
985.
The sensor kinase KdpD and the response regulator KdpE control induction of the kdpFABC operon encoding the high-affinity K+-transport system KdpFABC in response to K+ limitation or salt stress. Under K+ limiting conditions the Kdp system restores the intracellular K+ concentration, while in response to salt stress K+ is accumulated far above the normal content. The kinase activity of KdpD is inhibited at high concentrations of K+, so it has been puzzling how the sensor can be activated in response to salt stress. Here, we demonstrate that the universal stress protein UspC acts as a scaffolding protein of the KdpD/KdpE signaling cascade by interacting with a Usp domain in KdpD of the UspA subfamily under salt stress. Escherichia coli encodes three single domain proteins of this subfamily, UspA, UspC, and UspD, whose expression is up-regulated under various stress conditions. Among these proteins only UspC stimulated the in vitro reconstructed signaling cascade (KdpD→KdpE→DNA) resulting in phosphorylation of KdpE at a K+ concentration that would otherwise almost prevent phosphorylation. In agreement, in a ΔuspC mutant KdpFABC production was down-regulated significantly when cells were exposed to salt stress, but unchanged under K+ limitation. Biochemical studies revealed that UspC interacts specifically with the Usp domain in the stimulus perceiving N-terminal domain of KdpD. Furthermore, UspC stabilized the KdpD/KdpE∼P/DNA complex and is therefore believed to act as a scaffolding protein. This study describes the stimulation of a bacterial two-component system under distinct stress conditions by a scaffolding protein, and highlights a new role of the universal stress proteins.  相似文献   
986.
Rhizomania, one of the most devastating diseases in sugar beet, is caused by Beet Necrotic Yellow Vein Virus (BNYVV) belonging to the genus Benyvirus. Use of sugar beet varieties with resistance to BNYVV is generally considered as the only way to maintain a profitable yield on rhizomania-infested fields. As an alternative to natural resistance, we explored the transgenic expression of viral dsRNA for engineering resistance to rhizomania. Transgenic plants expressing an inverted repeat of a 0.4 kb fragment derived from the BNYVV replicase gene displayed high levels of resistance against different genetic strains of BNYVV when inoculated using the natural vector, Polymyxa betae. The resistance was maintained under high infection pressures and over prolonged growing periods in the greenhouse as well as in the field. Resistant plants accumulated extremely low amounts of transgene mRNA and high amounts of the corresponding siRNA in the roots, illustrative of RNA silencing as the underlying mechanism. The transgenic resistance compared very favourably to natural sources of resistance to rhizomania and thus offers an attractive alternative for breeding resistant sugar beet varieties.  相似文献   
987.
RNA silencing is an evolutionarily conserved system that functions as an antiviral mechanism in higher plants and insects. To counteract RNA silencing, viruses express silencing suppressors that interfere with both siRNA- and microRNA-guided silencing pathways. We used comparative in vitro and in vivo approaches to analyse the molecular mechanism of suppression by three well-studied silencing suppressors. We found that silencing suppressors p19, p21 and HC-Pro each inhibit the intermediate step of RNA silencing via binding to siRNAs, although the molecular features required for duplex siRNA binding differ among the three proteins. None of the suppressors affected the activity of preassembled RISC complexes. In contrast, each suppressor uniformly inhibited the siRNA-initiated RISC assembly pathway by preventing RNA silencing initiator complex formation.  相似文献   
988.
Synaptic destabilization by neuronal Nogo-A   总被引:1,自引:0,他引:1  
Formation and maintenance of a neuronal network is based on a balance between plasticity and stability of synaptic connections. Several molecules have been found to regulate the maintenance of excitatory synapses but nothing is known about the molecular mechanisms involved in synaptic stabilization versus disassembly at inhibitory synapses. Here, we demonstrate that Nogo-A, which is well known to be present in myelin and inhibit growth in the adult CNS, is present in inhibitory presynaptic terminals in cerebellar Purkinje cells at the time of Purkinje cell-Deep Cerebellar Nuclei (DCN) inhibitory synapse formation and is then downregulated during synapse maturation. We addressed the role of neuronal Nogo-A in synapse maturation by generating several mouse lines overexpressing Nogo-A, starting at postnatal ages and throughout adult life, specifically in cerebellar Purkinje cells and their terminals. The overexpression of Nogo-A induced a progressive disassembly, retraction and loss of the inhibitory Purkinje cell terminals. This led to deficits in motor learning and coordination in the transgenic mice. Prior to synapse disassembly, the overexpression of neuronal Nogo-A led to the downregulation of the synaptic scaffold proteins spectrin, spectrin-E and β-catenin in the postsynaptic neurons. Our data suggest that neuronal Nogo-A might play a role in the maintenance of inhibitory synapses by modulating the expression of synaptic anchoring molecules. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
989.
We have previously selected a peptide insert FPCDRLSGYWERGIPSPCVR recognizing the Puumala virus (PUUV) G2-glycoprotein-specific neutralizing monoclonal antibody (MAb) 1C9 with Kd of 2.85 x 10(-8) from a random peptide library X2CX14CX2 expressed on the pIII protein of the filamentous phage fd-tet. We have now created a second-generation phage-displayed peptide library in which each amino acid of the peptide was mutated randomly to another with a certain probability. Peptides were selected for higher affinity for MAb 1C9 and for a common binding motif for MAb 4G2 having an overlapping epitope with MAb 1C9 in G2 glycoprotein. The resulting peptides were synthesized as spots on cellulose membrane. Amino acid changes which improved the reactivity of the peptides to MAb 1C9 were combined in the peptide ATCDKLFGYYERGIPLPCAL with Kd of 1.49 x 10(-9) in biosensor measurements. Our results show that the binding properties of peptides, the affinity and the specificity can be improved and the binding specificity determining amino acids and structural factors can be analyzed by combining binding assays with synthetic peptides on membrane with the use of second-generation phage display libraries.  相似文献   
990.
Arbuscular mycorrhizal fungi (AMF) provide a number of ecosystem services as important members of the soil microbial community. Increasing evidence suggests AMF diversity is at least partially controlled by the identities of plants in the host plant neighborhood. However, much of this evidence comes from greenhouse studies or work in invaded systems dominated by single plant species, and has not been tested in species-rich grasslands. We worked in 67 grasslands spread across the three German Biodiversity Exploratories that are managed primarily as pastures and meadows, and collected data on AMF colonization, AMF richness, AMF community composition, plant diversity, and land use around focal Plantago lanceolata plants. We analyzed the data collected within each Exploratory (ALB Schwäbische Alb, HAI Hainich-Dün, SCH Schorfheide-Chorin) separately, and used variance partitioning to quantify the contribution of land use, host plant neighborhood, and spatial arrangement to the effect on AMF community composition. We performed canonical correspondence analysis to quantify the effect of each factor independently by removing the variation explained by the other factors. AMF colonization declined with increasing land use intensity (LUI) along with concurrent increases in non-AMF, suggesting that the ability of AMF to provide protection from pathogens declined under high LUI. In ALB and HAI mowing frequency and percent cover of additional P. lanceolata in the host plant neighborhood were important for AMF community composition. The similar proportional contribution of land use and host neighborhood to AMF community composition in a focal plant rhizosphere suggests that the diversity of this important group of soil microbes is similarly sensitive to changes at large and small scales.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号