首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5711篇
  免费   430篇
  2022年   36篇
  2021年   101篇
  2020年   48篇
  2019年   68篇
  2018年   87篇
  2017年   69篇
  2016年   146篇
  2015年   266篇
  2014年   288篇
  2013年   347篇
  2012年   418篇
  2011年   374篇
  2010年   266篇
  2009年   213篇
  2008年   313篇
  2007年   310篇
  2006年   282篇
  2005年   295篇
  2004年   284篇
  2003年   246篇
  2002年   220篇
  2001年   69篇
  2000年   54篇
  1999年   68篇
  1998年   79篇
  1997年   62篇
  1996年   61篇
  1995年   63篇
  1994年   60篇
  1993年   57篇
  1992年   40篇
  1991年   42篇
  1990年   36篇
  1989年   42篇
  1988年   41篇
  1987年   41篇
  1986年   32篇
  1985年   32篇
  1984年   37篇
  1983年   31篇
  1982年   22篇
  1981年   29篇
  1980年   24篇
  1979年   33篇
  1978年   18篇
  1977年   36篇
  1976年   24篇
  1973年   22篇
  1972年   17篇
  1971年   19篇
排序方式: 共有6141条查询结果,搜索用时 78 毫秒
991.
992.
The human sarco/endoplasmic reticulum (ER) Ca(2+)ATPase 3 (SERCA3) gene gives rise to SERCA3a-3f isoforms, the latter inducing ER stress in vitro. Here, we first demonstrated the co-expression of SERCA3a, -3d and -3f proteins in the heart. Evidence for endogenous proteins was obtained by using isoform-specific antibodies including a new SERCA3d-specific antibody, and either Western blotting of protein lysates or immunoprecipitation of membrane proteins. An immunolocalization study of both left ventricle tissue and isolated cardiomyocytes showed a distinct compartmentalization of the SERCA3 isoforms, as a uniform distribution of SERCA3a was detected while -3d and -3f isoforms were observed around the nucleus and in close vicinity of plasma membrane, respectively. Second, we studied their expressions in failing hearts including mixed (MCM) (n=1) and idiopathic dilated (IDCM) cardiomyopathies (n=4). Compared with controls (n=5), similar expressions of SERCA3a and -3d mRNAs were observed in all patients. In contrast, SERCA3f mRNA was found to be up-regulated in failing hearts (125+/-7%). Remarkably, overexpression of SERCA3f paralleled an increase in ER stress markers including processing of X-box-binding protein-1 (XBP-1) mRNA (176+/-24%), and expression of XBP-1 protein and glucose-regulated protein (GRP)78 (232+/-21%). These findings revisit the human heart's Ca(2+)ATPase system and indicate that SERCA3f may account for the mechanism of ER stress in vivo in heart failure.  相似文献   
993.
994.
In pursuit of potent and selective sphingosine-1-phosphate receptor agonists, we have utilized previously reported phenylamide and phenylimidazole scaffolds to explore extensive side-chain modifications to generate new molecular entities. A number of designed molecules demonstrate good selectivity and excellent in vitro and in vivo potency in both mouse and rat models. Oral administration of the lead molecule 11c (PPI-4667) demonstrated potent and dose-responsive lymphopenia.  相似文献   
995.
A pyrrolopyridinyl thiophene carboxamide 7 was discovered as a tractable starting point for a lead optimization effort in an AKT kinase inhibition program. SAR studies aided by a co-crystal structure of 7 in AKT2 led to the identification of AKT inhibitors with subnanomolar potency. Representative compounds showed antiproliferative activity as well as inhibition of phosphorylation of the downstream target GSK3β.  相似文献   
996.
Pest control mediated by organisms such as parasitoids is a valuable ecosystem service, particularly with regard to high costs, low effectiveness, and detrimental effects of some agrochemicals. This study examined infestation rates and abundance of pests and their natural enemies in organic and conventional almond orchards in California, differing in landscape context, understory plant cover, and plant species richness. Parasitoids of the commercially most important insect pest of almond, the Navel Orangeworm (NOW) were studied by rearing NOW in collected overwintering nuts. The indirect impact of vertebrate natural enemies of NOW were estimated by counting empty nut shells with feeding marks by wild birds and various mammals, found at the orchard floor. Mean nut infestation by NOW ranged from 0.8% to 37% per orchard and was reduced by parasitism rates, ranging from 0% to 22%, and vertebrate nut damage, ranging from 2% to 96% per orchard. The parasitoids were facilitated by a high proportion of natural habitat surrounding the orchards and high proportion of understory ground cover with vegetation. The vertebrate natural enemies were facilitated by a high proportion of natural habitat surrounding the orchards and plant species richness in the orchard understory. In conclusion, this study shows that pest control mediated by vertebrates and invertebrates promoted by near natural habitats can lower pest pressure by NOW larvae in overwintering almond. In case of the vertebrate nut damage this service might only be temporal and turn into a dis-service during and after harvest because the vertebrates continue to feed on the nuts and may also cause injuries to the trees.  相似文献   
997.
Neuronal and glial deposition of misfolded, proteolytically processed, polyubiquitinated and abnormally phosphorylated C-terminal fragments (CTFs) of the TAR DNA binding protein-43 (TDP-43) is a pathological hallmark of frontotemporal lobar degeneration with ubiquitin positive inclusions (FTLD-U) and certain cases of amyotrophic lateral sclerosis. We demonstrate that TDP-43 can be proteolytically processed by caspases upon induction of apoptosis to a major 35 kDa and a minor 25 kDa CTF. These fragments are initially soluble, but over time they accumulate as insoluble and pathologically phosphorylated derivatives. However, proteolytic processing appears not to be absolutely required for the deposition of insoluble TDP-43 species, since a caspase resistant mutant of TDP-43 is also converted into insoluble species. Phosphorylation at S409/410 apparently occurs late during the conversion of soluble to insoluble TDP-43, suggesting that phosphorylation is not a prerequisite for aggregation. Loss of function of the progranulin (PGRN) gene causes FTLD-U with TDP-43 positive inclusions and has been suggested to lead to caspase activation and subsequent TDP-43 processing. However, siRNA-mediated knockdown of PGRN in cell culture as well as a PGRN gene knockout in mice failed to cause the formation of the disease characterizing CTFs of TDP-43. Our findings therefore suggest that caspase-mediated processing generates CTFs of similar biochemical properties as those occurring in nuclear and cytoplasmic deposits of FTLD-U patients independent of PGRN levels.  相似文献   
998.
999.
Mass spectrometry-based proteomic analyses performed on cartilage tissue extracts identified the serine protease HtrA1/PRSS11 as a major protein component of human articular cartilage, with elevated levels occurring in association with osteoarthritis. Overexpression of a catalytically active form of HtrA1, but not an active site mutant (S328A), caused a marked reduction in proteoglycan content in chondrocyte-seeded alginate cultures. Aggrecan degradation fragments were detected in conditioned media from the alginate cultures overexpressing active HtrA1. Incubation of native or recombinant aggrecan with wild type HtrA1 resulted in distinct cleavage of these substrates. Cleavage of aggrecan by HtrA1 was strongly enhanced by HtrA1 agonists such as CPII, a C-terminal hexapeptide derived from the C-propeptide of procollagen IIα1 (i.e. chondrocalcin). A novel HtrA1-susceptible cleavage site within the interglobular domain (IGD) of aggrecan was identified, and an antibody that specifically recognizes the neoepitope sequence (VQTV356) generated at the HtrA1 cleavage site was developed. Western blot analysis demonstrated that HtrA1-generated aggrecan fragments containing the VQTV356 neoepitope were significantly more abundant in osteoarthritic cartilage compared with cartilage from healthy joints, implicating HtrA1 as a critical protease involved in proteoglycan turnover and cartilage degradation during degenerative joint disease.The mammalian high-temperature requirement A (HtrA) family of serine proteases is defined by a characteristic trypsin-like serine protease domain and one or two C-terminal PDZ domains. Four mammalian HtrA proteins have been identified to date, HtrA1–4. HtrA1 (also called PRSS11) is a ubiquitously expressed extracellular serine protease which contains a signal sequence for secretion, an insulin-like growth factor (IGF)2-binding protein domain, and a Kazal-type serine protease inhibitor domain in addition to the serine protease domain and one C-terminal PDZ domain (1). HtrA1 has been implicated in the progression of several pathologies including age-related macular degeneration, cancer, Alzheimer disease, rheumatoid arthritis, and osteoarthritis (OA) (210). HtrA1 has also been shown to inhibit osteoblast mineralization (11).Expression of HtrA1 has been found to be elevated in articular cartilage in association with OA (5). In addition, HtrA1 levels are up-regulated in murine cartilage after experimentally induced joint damage (6). The physiological role of HtrA1 in OA disease progression as well as in other pathologies is unclear. Preliminary studies using in vitro digestion assays suggest that HtrA1 might be capable of digesting cartilage extracellular matrix (ECM) proteins such as fibromodulin, cartilage oligomeric matrix protein (COMP), fibronectin, decorin, and aggrecan (6, 12, 13). Furthermore, it was recently reported that elevated levels of HtrA1 protein (∼7-fold above normal) are present in synovial fluids obtained from OA patients and that fibronectin fragments generated by HtrA1 cleavage induced the expression of catabolic enzymes such as matrix metalloproteinases-1 (MMP-1) and MMP-3 in synovial fibroblasts (4). HtrA1 has also been shown to modulate multiple signaling pathways in vitro. It binds to transforming growth factor-β family proteins including transforming growth factor-β1 and bone morphogenetic proteins 2 and 4 and inhibits signaling mediated by these factors (14, 15). In addition, HtrA1 has been shown to cleave IGF-binding protein-5 and possibly regulate signaling mediated by IGF (16). These findings suggest that the protease HtrA1 may play a physiological role in cartilage during OA.Articular cartilage is made up of chondrocytes surrounded by the ECM comprised mainly of the proteoglycan, aggrecan, and type II collagen. During normal homeostasis there is a dynamic balance between anabolic activities such as proteoglycan synthesis as well as catabolic activities in which the ECM is destroyed. When the catabolic activities of proteases, such as MMPs and aggrecanases, offset new matrix synthesis, focal degradation and loss of articular cartilage occurs, resulting in the development of OA. In some in vitro digestion studies, we and others have shown degradation of aggrecan by recombinant HtrA1 (6, 12, 13). In the present study we set out to examine the physiological relevance of aggrecan cleavage by HtrA1 in OA disease progression.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号