首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   486篇
  免费   29篇
  2023年   1篇
  2022年   7篇
  2021年   13篇
  2020年   6篇
  2019年   2篇
  2018年   10篇
  2017年   8篇
  2016年   13篇
  2015年   26篇
  2014年   27篇
  2013年   52篇
  2012年   56篇
  2011年   44篇
  2010年   24篇
  2009年   35篇
  2008年   23篇
  2007年   14篇
  2006年   28篇
  2005年   18篇
  2004年   21篇
  2003年   19篇
  2002年   16篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   5篇
  1997年   5篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1993年   4篇
  1992年   1篇
  1989年   3篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1975年   1篇
  1971年   1篇
  1963年   1篇
  1961年   1篇
  1960年   1篇
  1957年   1篇
  1951年   1篇
排序方式: 共有515条查询结果,搜索用时 31 毫秒
131.
Transplantation of human neural stem cells (NSCs) and their derivatives is a promising future treatment for neurodegenerative disease and traumatic nervous system lesions. An important issue is what kind of immunological reaction the cellular transplant and host interaction will result in. Previously, we reported that human NSCs, despite expressing MHC class I and class II molecules, do not trigger an allogeneic T cell response. Here, the immunocompetence of human NSCs, as well as differentiated neural cells, was further studied. Astrocytes expressed both MHC class I and class II molecules to a degree equivalent to that of the NSCs, whereas neurons expressed only MHC class I molecules. Neither the NSCs nor the differentiated cells triggered an allogeneic lymphocyte response. Instead, these potential donor NSCs and astrocytes, but not the neurons, exhibited a suppressive effect on an allogeneic immune response. The suppressive effect mediated by NSCs most likely involves cell–cell interaction. When the immunogenicity of human NSCs was tested in an acute spinal cord injury model in rodent, a xenogeneic rejection response was triggered. Thus, human NSCs and their derived astrocytes do not initiate, but instead suppress, an allogeneic response, while they cannot block a graft rejection in a xenogeneic setting.  相似文献   
132.
Adult female rats continuously exposed to androgens from prepuberty have reproductive and metabolic features of polycystic ovary syndrome (PCOS). We investigated whether such exposure adversely affects estrous cyclicity and the expression and distribution of gonadotropin-releasing hormone (GnRH), GnRH receptors, and corticotrophin-releasing hormone (CRH) in the hypothalamus and whether the effects are mediated by the androgen receptor (AR). We also assessed the effect of low-frequency electro-acupuncture (EA) on those variables. At 21 days of age, rats were randomly divided into three groups (control, PCOS, and PCOS EA; n = 12/group) and implanted subcutaneously with 90-day continuous-release pellets containing vehicle or 5α-dihydrostestosterone (DHT). From age 70 days, PCOS EA rats received 2-Hz EA (evoking muscle twitches) five times/week for 4–5 weeks. Hypothalamic protein expression was measured by immunohistochemistry and western blot. DHT-treated rats were acyclic, but controls had regular estrous cycles. In PCOS rats, hypothalamic medial preoptic AR protein expression and the number of AR- and GnRH-immunoreactive cells were increased, but CRH was not affected; however, GnRH receptor expression was decreased in both the pituitary and hypothalamus. Low-frequency EA restored estrous cyclicity within 1 week and reduced the elevated hypothalamic GnRH and AR expression levels. EA did not affect GnRH receptor or CRH expression. Interestingly, nuclear AR co-localized with GnRH in the hypothalamus. Thus, rats with DHT-induced PCOS have disrupted estrous cyclicity and an increased number of hypothalamic cells expressing GnRH, most likely mediated by AR activation. Repeated low-frequency EA normalized estrous cyclicity and restored GnRH and AR protein expression. These results may help explain the beneficial neuroendocrine effects of low-frequency EA in women with PCOS.  相似文献   
133.
Nitric oxide (NO) has emerged as a central signaling molecule in plants and animals. However, the long search for a plant NO synthase (NOS) enzyme has only encountered false leads. The first works describing a pathogen-induced NOS-like plant protein were soon retracted. New hope came from the identification of NOS1, an Arabidopsis thaliana protein with an atypical NOS activity that was found to be targeted to mitochondria in roots. Although concerns about the NO-producing activity of this protein were raised (causing the renaming of the protein to NO-associated 1), compelling data on its biological role were missing until recently. Strong evidence is now available that this protein functions as a GTPase that is actually targeted to plastids, where it might be required for ribosome function. These and other results support the argument that the defective NO production in loss-of-function mutants is an indirect effect of interfering with normal plastid functions and that plastids play an important role in regulating NO levels in plant cells.A major revolution in biology took place by the early 1990s after the discovery that nitric oxide (NO), a free radical, was not a toxic by-product of oxidative metabolism but had a fundamental role as a signaling molecule regulating normal physiological processes in animal cells (Culotta and Koshland, 1992). A role of this volatile molecule in plant defense responses was subsequently reported, and it is now well established that NO is also a key player in the regulation of different plant developmental processes, including germination, root growth, vascular differentiation, stomatal closure, and flowering (Lamattina et al., 2003; Wendehenne et al., 2004; Crawford and Guo, 2005). Animal cells synthesize NO primarily by the activity of NO synthase (NOS) enzymes. There are several NOS isoforms, but all of them catalyze the same basic reaction: a NADPH-dependent oxidation of l-Arg to NO and l-citrulline. By contrast, the synthesis of NO in plant cells remains a matter of debate. The first reported mechanism to make NO in plants was the reduction of nitrite to NO catalyzed (with low efficiency) by nitrate reductase (NR), a cytosolic enzyme that normally reduces nitrate to nitrite (Yamasaki et al., 1999). But the contribution of NR to NO synthesis is still controversial.The analysis of the Arabidopsis thaliana nia1 nia2 double mutant, which shows substantially reduced NR activity levels, has shown that such activity is required for NO synthesis during flowering (Seligman et al., 2008), auxin-induced lateral root development (Kolbert et al., 2008), and abscisic acid (ABA)-induced stomatal closure (Desikan et al., 2002; Bright et al., 2006) but not during infection (Zhang et al., 2003), salicylic acid treatment (Zottini et al., 2007), or mechanical stress (Garces et al., 2001). Furthermore, foliar extracts of the mutant show the same capacity to produce NO as wild-type plants when nitrite is exogenously supplied (Modolo et al., 2005). These results indicate that additional mechanisms to reduce nitrite into NO exist in plant cells and that the decreased capability for NO synthesis of mutant plants with defective NR activity might result from their reduced nitrite levels (Modolo et al., 2005). Other enzymatic sources for nitrite-dependent NO synthesis exist in the plasma membrane (Stohr et al., 2001) and mitochondria (Planchet et al., 2005), whereas nonenzymatic production of NO from nitrite has been shown to occur in acidic and reducing environments, such as the apoplasm (Bethke et al., 2004) and plastids (Cooney et al., 1994). The highly reduced levels of l-Arg in the nia1 nia2 mutant (Modolo et al., 2006) might also compromise its ability to produce NO. This amino acid is a substrate for the production of polyamines, compounds that have been proposed to participate in NO synthesis (Tun et al., 2006). Additionally, plants have been found to synthesize NO by an Arg-dependent NOS activity similar to that present in animal cells, as detailed in the next section.  相似文献   
134.
135.
Several new and differently functionalized cis‐2,3‐dimethylnorbornane derivatives presenting diverse side‐chain lengths were prepared, the structures of which are related to the natural fragrance β‐santalol. In particular, exo‐ and endo‐3,8‐dihydro‐β‐santalols, with either (E) or (Z) C?C‐bond configuration on the side chain, were synthesized in seven steps and 21–24% overall yields. Several other exo‐ and endo‐norbornyl alcohols with shorter side chains were also prepared in high yields. The olfactory evaluation indicated woody, sandalwood, as well as fruity notes for some of the derivatives.  相似文献   
136.

Background

Inflammation has been proposed to be important in the pathogenesis of diabetic retinopathy. An early feature of inflammation is the release of cytokines leading to increased expression of endothelial activation markers such as vascular cellular adhesion molecule-1 (VCAM-1). Here we investigated the impact of diabetes and dyslipidemia on VCAM-1 expression in mouse retinal vessels, as well as the potential role of tumor necrosis factor-α (TNFα).

Methodology/Principal Findings

Expression of VCAM-1 was examined by confocal immunofluorescence microscopy in vessels of wild type (wt), hyperlipidemic (ApoE−/−) and TNFα deficient (TNFα−/−, ApoE−/−/TNFα−/−) mice. Eight weeks of streptozotocin-induced diabetes resulted in increased VCAM-1 in wt mice, predominantly in small vessels (<10 µm). Diabetic wt mice had higher total retinal TNFα, IL-6 and IL-1β mRNA than controls; as well as higher soluble VCAM-1 (sVCAM-1) in plasma. Lack of TNFα increased higher basal VCAM-1 protein and sVCAM-1, but failed to up-regulate IL-6 and IL-1β mRNA and VCAM-1 protein in response to diabetes. Basal VCAM-1 expression was higher in ApoE−/− than in wt mice and both VCAM-1 mRNA and protein levels were further increased by high fat diet. These changes correlated to plasma cholesterol, LDL- and HDL-cholesterol, but not to triglycerides levels. Diabetes, despite further increasing plasma cholesterol in ApoE−/− mice, had no effects on VCAM-1 protein expression or on sVCAM-1. However, it increased ICAM-1 mRNA expression in retinal vessels, which correlated to plasma triglycerides.

Conclusions/Significance

Hyperglycemia triggers an inflammatory response in the retina of normolipidemic mice and up-regulation of VCAM-1 in retinal vessels. Hypercholesterolemia effectively promotes VCAM-1 expression without evident stimulation of inflammation. Diabetes-induced endothelial activation in ApoE−/− mice seems driven by elevated plasma triglycerides but not by cholesterol. Results also suggest a complex role for TNFα in the regulation of VCAM-1 expression, being protective under basal conditions but pro-inflammatory in response to diabetes.  相似文献   
137.
138.
Members of the Nkx family of homeodomain proteins are involved in a variety of developmental processes such as cell fate determination in the CNS and in the pancreas. Here we describe the cloning and developmental expression pattern of Nkx6.3, a new member of the Nkx6 subfamily of homeodomain proteins. Nkx6.3 is expressed in the developing CNS and gastro-intestinal tract. In contrast to Nkx6.1 and Nkx6.2 that are broadly expressed in ventral positions of the developing CNS, Nkx6.3 shows a remarkably selective expression in a subpopulation of differentiating V2 neurons at caudal hindbrain levels. The expression of Nkx6.3 at this level depends on the activity of other Nkx6 proteins. In the gut, Nkx6.3 is expressed in duodenal and glandular stomach endoderm and at the end of gestation Nkx6.3 became restricted to the base of the gastric units in the glandular stomach. The expression of Nkx6.3 overlapped with the expression of Nkx6.2 both in the CNS and in the gut. Transient Nkx6.2 expression was also detected in the developing pancreas. However, analysis of Nkx6.2(-/-) mice did not display any obvious aberrations of pancreatic or stomach development.  相似文献   
139.
Intraocular co-grafts of rat fetal spinal cord and dorsal root ganglia were used to examine the enhanced survival, growth, and differentiation of sensory neurons by nerve growth factor. E14 lumbar spinal segments were implanted into the anterior eye chamber of capsaicin-pretreated rats. Two weeks later, an E14 dorsal root ganglion was implanted beside the spinal cord graft. Nerve growth factor or vehicle was injected weekly for 4 weeks into the anterior eye chamber. Co-grafts were examined weekly and, at 6 weeks, processed for calcitonin gene-related peptide (CGRP) immunofluorescence. No differences in overall size were determined for the grafts. Co-grafts treated with nerve growth factor contained many more CGRP neurons (19.4 cells/20 microm) that were significantly larger (mean 764 microm2) than neurons from control co-grafts (8.6 cells/20 microm; mean 373 microm2). In co-grafts treated with nerve growth factor, CGRP-immunoreactive fibers were extensive in the dorsal root ganglion, adjacent iris, and spinal cord compared to control co-grafts. A few CGRP-positive motoneurons were observed in the spinal cord, but no differences in number or size of motoneurons were found. The current report demonstrates that spinal cord and dorsal root ganglia can be co-grafted in oculo for long periods of time. Many dorsal root ganglion neurons survive and send peripheral processes into the iris and central processes into the spinal cord under the influence of exogenous nerve growth factor. The intraocular graft paradigm can be of use to further examine the role of neurotrophic factors in regulating or modulating dorsal root ganglion and spinal cord neurons.  相似文献   
140.
We have examined the effect of a hemodialysis-induced 40% reduction in plasma amino acid concentrations on rates of muscle protein synthesis and breakdown in normal swine. Muscle protein kinetics were measured by tracer methodology using [(2)H(5)]phenylalanine and [1-(13)C]leucine and analysis of femoral arterial and venous samples and tissue biopsies. Net amino acid release by muscle was accelerated during dialysis. Phenylalanine utilization for muscle protein synthesis was reduced from the basal value of 45 +/- 8 to 25 +/- 6 nmol x min(-1) x 100 ml leg(-1) between 30 and 60 min after start of dialysis and was stimulated when amino acids were replaced while dialysis continued. Muscle protein breakdown was unchanged. The signal for changes in synthesis appeared to be changes in plasma amino acid concentrations, as intramuscular concentrations remained constant throughout. The changes in muscle protein synthesis were accompanied by a reduction or stimulation, respectively, in the guanine nucleotide exchange activity of eukaryotic initiation factor (eIF)2B following hypoaminoacidemia vs. amino acid replacement. We conclude that a reduction in plasma amino acid concentrations below the normal basal value signals an inhibition of muscle protein synthesis and that corresponding changes in eIF2B activity suggest a possible role in mediating the response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号