首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3163篇
  免费   213篇
  2024年   3篇
  2023年   26篇
  2022年   29篇
  2021年   97篇
  2020年   61篇
  2019年   75篇
  2018年   99篇
  2017年   91篇
  2016年   125篇
  2015年   212篇
  2014年   210篇
  2013年   266篇
  2012年   319篇
  2011年   299篇
  2010年   192篇
  2009年   162篇
  2008年   201篇
  2007年   172篇
  2006年   149篇
  2005年   136篇
  2004年   119篇
  2003年   89篇
  2002年   59篇
  2001年   11篇
  2000年   13篇
  1999年   19篇
  1998年   18篇
  1997年   17篇
  1996年   9篇
  1995年   5篇
  1994年   12篇
  1993年   10篇
  1992年   11篇
  1991年   5篇
  1990年   4篇
  1989年   4篇
  1988年   4篇
  1987年   5篇
  1986年   4篇
  1985年   6篇
  1984年   6篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1969年   2篇
  1956年   1篇
  1938年   1篇
排序方式: 共有3376条查询结果,搜索用时 15 毫秒
151.
In response to ionizing radiation (IR), the tumor suppressor p53 is stabilized and promotes either cell cycle arrest or apoptosis. Chk2 activated by IR contributes to this stabilization, possibly by direct phosphorylation. Like p53, Chk2 is mutated in patients with Li-Fraumeni syndrome. Since the ataxia telangiectasia mutated (ATM) gene is required for IR-induced activation of Chk2, it has been assumed that ATM and Chk2 act in a linear pathway leading to p53 activation. To clarify the role of Chk2 in tumorigenesis, we generated gene-targeted Chk2-deficient mice. Unlike ATM(-/-) and p53(-/-) mice, Chk2(-/-) mice do not spontaneously develop tumors, although Chk2 does suppress 7,12-dimethylbenzanthracene-induced skin tumors. Tissues from Chk2(-/-) mice, including those from the thymus, central nervous system, fibroblasts, epidermis, and hair follicles, show significant defects in IR-induced apoptosis or impaired G(1)/S arrest. Quantitative comparison of the G(1)/S checkpoint, apoptosis, and expression of p53 proteins in Chk2(-/-) versus ATM(-/-) thymocytes suggested that Chk2 can regulate p53-dependent apoptosis in an ATM-independent manner. IR-induced apoptosis was restored in Chk2(-/-) thymocytes by reintroduction of the wild-type Chk2 gene but not by a Chk2 gene in which the sites phosphorylated by ATM and ataxia telangiectasia and rad3(+) related (ATR) were mutated to alanine. ATR may thus selectively contribute to p53-mediated apoptosis. These data indicate that distinct pathways regulate the activation of p53 leading to cell cycle arrest or apoptosis.  相似文献   
152.
Oncogenic ras and p53 cooperate to induce cellular senescence   总被引:14,自引:0,他引:14       下载免费PDF全文
Oncogenic activation of the mitogen-activated protein (MAP) kinase cascade in murine fibroblasts initiates a senescence-like cell cycle arrest that depends on the ARF/p53 tumor suppressor pathway. To investigate whether p53 is sufficient to induce senescence, we introduced a conditional murine p53 allele (p53(val135)) into p53-null mouse embryonic fibroblasts and examined cell proliferation and senescence in cells expressing p53, oncogenic Ras, or both gene products. Conditional p53 activation efficiently induced a reversible cell cycle arrest but was unable to induce features of senescence. In contrast, coexpression of oncogenic ras or activated mek1 with p53 enhanced both p53 levels and activity relative to that observed for p53 alone and produced an irreversible cell cycle arrest that displayed features of cellular senescence. p19(ARF) was required for this effect, since p53(-/-) ARF(-/-) double-null cells were unable to undergo senescence following coexpression of oncogenic Ras and p53. Although the levels of exogenous p53 achieved in ARF-null cells were relatively low, the stabilizing effects of p19(ARF) on p53 could not explain the cooperation between oncogenic Ras and p53 in promoting senescence. Hence, enforced p53 expression without oncogenic ras in p53(-/-) mdm2(-/-) double-null cells produced extremely high p53 levels but did not induce senescence. Taken together, our results indicate that oncogenic activation of the MAP kinase pathway in murine fibroblasts converts p53 into a senescence inducer through both quantitative and qualitative mechanisms.  相似文献   
153.
154.
30 Aeromonas hydrophila water isolates were tested for bacteriocin-like substance (BLS) production using a target panel of closely related microorganisms and other Gram-positive and Gram-negative bacteria, including food-borne pathogens. A. hydrophila showed antibacterial activity against one or more indicator microorganisms, but the activity emerged only with non-phylogenetically related genera or species. In particular all A. hydrophila showed antibacterial activity against one or more of the tested Staphylococcus strains, five against Listeria spp. (Listeria seeligeri, Listeria welshimeri and Listeria ivanovii), and eight presented a weak antagonistic activity towards Streptococcus agalactiae and Lactobacillus spp. Inhibitory activity was not observed against the other Gram-positive (Listeria monocytogenes, Listeria innocua and Enterococcus spp.) and Gram-negative tested strains, including Aeromonas sobria, Aeromonas caviae and the same A. hydrophila, when used as indicator. Anti-staphylococcal activity was observed with a gradual increase of the inhibition zone during incubation and seemed to be influenced by A. hydrophila hemolytic expression. Extrachromosomal analysis showed the presence, in 70% of the strains, of one to five plasmids with molecular masses ranging from 2.1 to 41.5 MDa, but it was not possible to relate this result with BLS production.  相似文献   
155.
The redox cycle of 2,5-dimethoxybenzoquinone (2,5-DMBQ) is proposed as a source of reducing equivalent for the regeneration of Fe2+ and H2O2 in brown rot fungal decay of wood. Oxalate has also been proposed to be the physiological iron reductant. We characterized the effect of pH and oxalate on the 2,5-DMBQ-driven Fenton chemistry and on Fe3+ reduction and oxidation. Hydroxyl radical formation was assessed by lipid peroxidation. We found that hydroquinone (2,5-DMHQ) is very stable in the absence of iron at pH 2 to 4, the pH of degraded wood. 2,5-DMHQ readily reduces Fe3+ at a rate constant of 4.5 x 10(3) M(-1)s(-1) at pH 4.0. Fe2+ is also very stable at a low pH. H2O2 generation results from the autoxidation of the semiquinone radical and was observed only when 2,5-DMHQ was incubated with Fe3+. Consistent with this conclusion, lipid peroxidation occurred only in incubation mixtures containing both 2,5-DMHQ and Fe3+. Catalase and hydroxyl radical scavengers were effective inhibitors of lipid peroxidation, whereas superoxide dismutase caused no inhibition. At a low concentration of oxalate (50 micro M), ferric ion reduction and lipid peroxidation are enhanced. Thus, the enhancement of both ferric ion reduction and lipid peroxidation may be due to oxalate increasing the solubility of the ferric ion. Increasing the oxalate concentration such that the oxalate/ferric ion ratio favored formation of the 2:1 and 3:1 complexes resulted in inhibition of iron reduction and lipid peroxidation. Our results confirm that hydroxyl radical formation occurs via the 2,5-DMBQ redox cycle.  相似文献   
156.
Focused microarray analysis   总被引:9,自引:0,他引:9  
  相似文献   
157.
Flax fibers composed mainly of cellulose were subjected to heterogeneous valerylation reaction. The progress of the chemical modification was assessed by transmission FTIR. The heterogeneous esterification reaction followed first-order kinetics, and a plateau was reached already after 30 min. The intensity of the FTIR hydroxyl absorption band (nu = 3400 cm(-1)) did not appreciably decrease during the acylation reaction, showing that only a small fraction of the fiber hydroxyls was involved in the reaction. The degree of valerate substitution (DS) at the fiber surface (50 A thick layer) was evaluated by means of ESCA. Surface valerylation increased with reaction time and leveled off at DS around 1 after 30 min, in agreement with the FTIR data. The chemically modified fibers maintain the Cellulose I crystal structure and the original crystallinity degree up to the longest reaction time investigated (180 min). Dynamic contact angle measurements showed that surface hydrophobicity as indicated by advancing contact angle rapidly increased upon valerylation reaching a plateau after about 10 min. Chemical modification does not appreciably alter fiber thermal stability (by TGA) and morphology (by SEM).  相似文献   
158.
This study demonstrates the involvement of phosphotyrosine phosphatases on the activity and regulation of GSH ATP-dependent transport system that we have previously identified in NIH3T3 fibroblasts. This is shown by the fact that increases of the initial rate of GSH uptake were measured in NIH3T3 overexpressing a synthetic gene coding for a low-Mr-phosphotyrosine protein phosphatase (LMW-PTP), while decreases were obtained in NIH3T3 overexpressing the phosphatase inactive mutant (LMW-C12SPTP), with respect to NIH3T3neo. Moreover, these results have been confirmed by experiments performed in the same cells by vanadate, and H2O2 treatment on both GSH transport and mediated passive transport of glucose. A possible regulation of this transport system by platelet-derived growth factor receptor (PDGFr) with tyrosine kinase activity is also demonstrated. Moreover, these data show a relationship among GSH, PDGFr and phosphotyrosine phosphatase activity, and suggest a role of GSH transport systems on the cell proliferation process.  相似文献   
159.
The nonsense-mediated mRNA decay (NMD) pathway promotes the rapid degradation of mRNAs containing premature stop codons (PTCs). In Caenorhabditis elegans, seven genes (smg1-7) playing an essential role in NMD have been identified. Only SMG2-4 (known as UPF1-3) have orthologs in Saccharomyces cerevisiae. Here we show that the Drosophila orthologs of UPF1-3, SMG1, SMG5 and SMG6 are required for the degradation of PTC-containing mRNAs, but that there is no SMG7 ortholog in this organism. In contrast, orthologs of SMG5-7 are encoded by the human genome and all three are required for NMD. In human cells, exon boundaries have been shown to play a critical role in defining PTCs. This role is mediated by components of the exon junction complex (EJC). Contrary to expectation, however, we show that the components of the EJC are dispensable for NMD in Drosophila cells. Consistently, PTC definition occurs independently of exon boundaries in DROSOPHILA: Our findings reveal that despite conservation of the NMD machinery, different mechanisms have evolved to discriminate premature from natural stop codons in metazoa.  相似文献   
160.
Two different prime-boost immunization protocols were tested in rabbits and their immune response was evaluated and compared with the final aim of defining a vaccine strategy that might be able to protect non-human primates from infection with the pathogenic simian/human immunodeficiency virus, SHIV(89.6P). The two regimens were based on three priming immunizations with either an expression plasmid plus a fowlpox (FP) recombinant vector or with two FP recombinant vectors, each one expressing either the SIV(mac239) gag/pol or the HIV-1env(89.6P) genes. In both protocols, priming immunizations were followed by two boosts with SHIV-mimicking virus-like particles (VLP). A complete SHIV-specific response was observed in all animals. Interestingly, the DNA vaccine was three to 10 times more efficient than the FP recombinant in inducing an anti-gag humoral response. Real-time PCR confirmed the memory effect on T-cell subsets secreting interleukin-4 and interferon-gamma, as a consequence of stimulation of both arms of the immune system. Although both protocols were almost equally effective in eliciting homologous neutralizing antibodies and highlighted the efficacy of VLP administration for boosting, protocol A seemed to be more effective in promoting a balanced T-cell memory immune response and appears more promising for vaccine purposes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号