首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20795篇
  免费   1500篇
  国内免费   1篇
  2023年   85篇
  2022年   93篇
  2021年   194篇
  2020年   161篇
  2019年   169篇
  2018年   388篇
  2017年   344篇
  2016年   556篇
  2015年   971篇
  2014年   899篇
  2013年   1292篇
  2012年   1556篇
  2011年   1509篇
  2010年   883篇
  2009年   700篇
  2008年   1280篇
  2007年   1239篇
  2006年   1183篇
  2005年   1110篇
  2004年   1024篇
  2003年   923篇
  2002年   838篇
  2001年   402篇
  2000年   423篇
  1999年   369篇
  1998年   166篇
  1997年   147篇
  1996年   116篇
  1995年   126篇
  1994年   115篇
  1993年   95篇
  1992年   230篇
  1991年   220篇
  1990年   194篇
  1989年   154篇
  1988年   170篇
  1987年   141篇
  1986年   134篇
  1985年   121篇
  1984年   114篇
  1983年   90篇
  1982年   81篇
  1981年   104篇
  1979年   109篇
  1978年   101篇
  1977年   83篇
  1976年   92篇
  1975年   78篇
  1974年   91篇
  1971年   74篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
31.
The removal of the 5′-cap structure by the decapping enzyme DCP2 and its coactivator DCP1 shuts down translation and exposes the mRNA to 5′-to-3′ exonucleolytic degradation by XRN1. Although yeast DCP1 and DCP2 directly interact, an additional factor, EDC4, promotes DCP1–DCP2 association in metazoan. Here, we elucidate how the human proteins interact to assemble an active decapping complex and how decapped mRNAs are handed over to XRN1. We show that EDC4 serves as a scaffold for complex assembly, providing binding sites for DCP1, DCP2 and XRN1. DCP2 and XRN1 bind simultaneously to the EDC4 C-terminal domain through short linear motifs (SLiMs). Additionally, DCP1 and DCP2 form direct but weak interactions that are facilitated by EDC4. Mutational and functional studies indicate that the docking of DCP1 and DCP2 on the EDC4 scaffold is a critical step for mRNA decapping in vivo. They also revealed a crucial role for a conserved asparagine–arginine containing loop (the NR-loop) in the DCP1 EVH1 domain in DCP2 activation. Our data indicate that DCP2 activation by DCP1 occurs preferentially on the EDC4 scaffold, which may serve to couple DCP2 activation by DCP1 with 5′-to-3′ mRNA degradation by XRN1 in human cells.  相似文献   
32.
33.

This article aims at comparing reference methods for the assessment of cancer risk from exposure to genotoxic carcinogen chemical substances and to ionizing radiation. For chemicals, cancer potency is expressed as a toxicological reference value (TRV) based on the most sensitive type of cancer generally observed in animal experiments of oral or inhalation exposure. A dose–response curve is established by modelling experimental data adjusted to apply to human exposure. This leads to a point of departure from which the TRV is derived as the slope of a linear extrapolation to zero dose. Human lifetime cancer risk can then be assessed as the product of dose by TRV and it is generally considered to be tolerable in a 10–6–10–4 range for the public in a normal situation. Radiation exposure is assessed as an effective dose corresponding to a weighted average of energy deposition in body organs. Cancer risk models were derived from the epidemiological follow-up of atomic bombing survivors. Considering a linear-no-threshold dose-risk relationship and average baseline risks, lifetime nominal risk coefficients were established for 13 types of cancers. Those are adjusted according to the severity of each cancer type and combined into an overall indicator denominated radiation detriment. Exposure to radiation is subject to dose limits proscribing unacceptable health detriment. The differences between chemical and radiological cancer risk assessments are discussed and concern data sources, extrapolation to low doses, definition of dose, considered health effects and level of conservatism. These differences should not be an insuperable impediment to the comparison of TRVs with radiation risk, thus opportunities exist to bring closer the two types of risk assessment.

  相似文献   
34.
The relative importance of multiple vectors to the initial establishment, spread and population dynamics of invasive species remains poorly understood. This study used molecular methods to clarify the roles of commercial shipping and recreational boating in the invasion by the cosmopolitan tunicate, Botryllus schlosseri. We evaluated (i) single vs. multiple introduction scenarios, (ii) the relative importance of shipping and boating to primary introductions, (iii) the interaction between these vectors for spread (i.e. the presence of a shipping-boating network) and (iv) the role of boating in determining population similarity. Tunicates were sampled from 26 populations along the Nova Scotia, Canada, coast that were exposed to either shipping (i.e. ports) or boating (i.e. marinas) activities. A total of 874 individuals (c. 30 per population) from five ports and 21 marinas was collected and analysed using both mitochondrial cytochrome c oxidase subunit I gene (COI) and 10 nuclear microsatellite markers. The geographical location of multiple hotspot populations indicates that multiple invasions have occurred in Nova Scotia. A loss of genetic diversity from port to marina populations suggests a stronger influence of ships than recreational boats on primary coastal introductions. Population genetic similarity analysis reveals a dependence of marina populations on those that had been previously established in ports. Empirical data on marina connectivity because of boating better explains patterns in population similarities than does natural spread. We conclude that frequent primary introductions arise by ships and that secondary spread occurs gradually thereafter around individual ports, facilitated by recreational boating.  相似文献   
35.
Random in vitro mutagenesis of a cloned Bacillus cereus 5/B/6 beta-lactamase II gene was used to select defective genes unable to confer ampicillin or cephalosporin C resistance to Escherichia coli. DNA sequencing of mutant genes identified histidine at position 28 as important to beta-lactamase II function. In addition, the isolation of six identical frameshift mutants established that the carboxyl-terminal end of beta-lactamase II is critical for enzyme function. Random mutagenesis also revealed that His88 (implicated previously as one of 4 residues acting as a zinc ligand) is crucial to enzymatic activity and that a glycine to glutamic acid substitution at position 148 produced a defective beta-lactamase. Oligonucleotide mutagenesis directed at Glu37 and Glu212 suggests that these residues are inconsequential to enzyme function but that histidine at position 28 may be involved in substrate binding or recognition.  相似文献   
36.
37.
Carbon-13 NMR spectroscopy has been used to further document the interaction, at low and high temperatures, of N-acetylglucosamine and its short polymers with hen egg-white lysozyme. The results have been compared with the corresponding X-ray crystallographic data. Two domains, the active site and the hydrophobic box, have been found by NMR to undergo conformational rearrangement while X-ray crystallography only detected changes located in the active site. The extent of the modifications induced by inhibitor binding was proportional to the inhibitor size. The two techniques concurred to show that even in the presence of monosaccharide (N-acetylglucosamine), more than one subsite of the enzyme was occupied at high temperature, the binding at the C-site being the best defined. The thermal transition of lysozyme still occurred in solution when inhibitors were bound. However, in the solid state, crystallographic data showed that the transition was hindered.  相似文献   
38.
39.
Hepatitis C virus (HCV) is a major cause of liver disease worldwide and HCV infection represents a major health problem. HCV associates with host lipoproteins forming host/viral hybrid complexes termed lipoviral particles. Apolipoprotein E (apoE) is a lipoprotein component that interacts with heparan sulfate proteoglycans (HSPG) to mediate hepatic lipoprotein uptake, and may likewise mediate HCV entry. We sought to define the functional regions of apoE with an aim to identify critical apoE binding partners involved in HCV infection. Using adenoviral vectors and siRNA to modulate apoE expression we show a direct correlation of apoE expression and HCV infectivity, whereas no correlation exists with viral protein expression. Mutating the HSPG binding domain (HSPG-BD) of apoE revealed key residues that are critical for mediating HCV infection. Furthermore, a novel synthetic peptide that mimics apoE’s HSPG-BD directly and competitively inhibits HCV infection. Genetic knockdown of the HSPG proteins syndecan (SDC) 1 and 4 revealed that SDC4 principally mediates HCV entry. Our data demonstrate that HCV uses apoE-SDC4 interactions to enter hepatoma cells and establish infection. Targeting apoE-SDC interactions could be an alternative strategy for blocking HCV entry, a critical step in maintaining chronic HCV infection.  相似文献   
40.
Four main molecular forms of acetylcholinesterase (AChE) can be solubilized from newborn rat superior cervical ganglia (SCG), homogenized in the presence of a high-ionic-strength, detergent-containing medium. These forms, respectively referred to as 16, 10, 6.5, and 4 S, are characterized by their sedimentation coefficients. Their relative proportions in SCG are notably different in vivo during postnatal maturation, and in culture. The 16-S AChE appears to be mainly neuronal in origin, is maintained in culture independently of original presynaptic in vivo elements, and its cellular pool is not depleted in the presence of tetrodotoxin (TTX).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号