首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3107篇
  免费   207篇
  2024年   3篇
  2023年   25篇
  2022年   42篇
  2021年   94篇
  2020年   59篇
  2019年   73篇
  2018年   96篇
  2017年   90篇
  2016年   121篇
  2015年   211篇
  2014年   206篇
  2013年   264篇
  2012年   309篇
  2011年   295篇
  2010年   188篇
  2009年   158篇
  2008年   195篇
  2007年   168篇
  2006年   146篇
  2005年   131篇
  2004年   119篇
  2003年   87篇
  2002年   57篇
  2001年   11篇
  2000年   13篇
  1999年   18篇
  1998年   18篇
  1997年   16篇
  1996年   9篇
  1995年   3篇
  1994年   12篇
  1993年   10篇
  1992年   11篇
  1991年   5篇
  1990年   4篇
  1989年   4篇
  1988年   4篇
  1987年   5篇
  1986年   4篇
  1985年   6篇
  1984年   6篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1969年   2篇
  1956年   1篇
  1938年   1篇
排序方式: 共有3314条查询结果,搜索用时 46 毫秒
991.

Background

In non-human primates grasp-related sensorimotor transformations are accomplished in a circuit involving the anterior intraparietal sulcus (area AIP) and both the ventral and the dorsal sectors of the premotor cortex (vPMC and dPMC, respectively). Although a human homologue of such a circuit has been identified, the time course of activation of these cortical areas and how such activity relates to specific kinematic events has yet to be investigated.

Methodology/Principal Findings

We combined kinematic and event-related potential techniques to explicitly test how activity within human grasping-related brain areas is modulated in time. Subjects were requested to reach towards and grasp either a small stimulus using a precision grip (i.e., the opposition of index finger and thumb) or a large stimulus using a whole hand grasp (i.e., the flexion of all digits around the stimulus). Results revealed a time course of activation starting at the level of parietal regions and continuing at the level of premotor regions. More specifically, we show that activity within these regions was tuned for specific grasps well before movement onset and this early tuning was carried over - as evidenced by kinematic analysis - during the preshaping period of the task.

Conclusions/Significance

Data are discussed in terms of recent findings showing a marked differentiation across different grasps during premovement phases which was carried over into subsequent movement phases. These findings offer a substantial contribution to the current debate about the nature of the sensorimotor transformations underlying grasping. And provide new insights into the detailed movement information contained in the human preparatory activity for specific hand movements.  相似文献   
992.
993.

Objective

The aim of our study was to elucidate the pathophysiology of systemic sclerosis-related osteoporosis and the prevalence of vertebral fragility fracture in postmenopausal women with systemic sclerosis (SSc).

Methodology

Fifty-four postmenopausal women with scleroderma and 54 postmenopausal controls matched for age, BMI, and smoking habits were studied. BMD was measured by dual energy-x-ray absorptiometry at spine and femur, and by ultrasonography at calcaneus The markers of bone turnover included serum osteocalcin and urinary deoxypyridinoline. All subjects had a spine X-ray to ascertain the presence of vertebral fractures.

Results

bone mineral density at lumbar spine (BMD 0.78±0.08 vs 0.88±0.07; p<0,001), femoral neck (BMD: 0.56±0.04 vs 0.72±0.07; p<0,001) and total femur (BMD: 0.57±0.04 vs 0.71±0.06; p<0,001) and ultrasound parameter at calcaneus (SI: 80.10±5.10 vs 94.80±6.10 p<0,001) were significantly lower in scleroderma compared with controls; bone turnover markers and parathyroid hormone level were significantly higher in scleroderma compared with controls, while serum of 25(OH)D3 was significantly lower. In scleroderma group the serum levels of 25(OH)D3 significantly correlated with PTH levels, BMD, stiffness index and bone turnover markers. One or more moderate or severe vertebral fractures were found in 13 patients with scleroderma, wherease in control group only one patient had a mild vertebral fracture.

Conclusion

Our data shows, for the first time, that vertebral fractures are frequent in subjects with scleroderma, and suggest that lower levels of 25(OH)D3 may play a role in the risk of osteoporosis and vertebral fractures.  相似文献   
994.
Cardiovascular diseases represent the main cause of mortality in the industrialized world and the identification of effective preventive strategies is of fundamental importance. Sulforaphane, an isothiocyanate from cruciferous vegetables, has been shown to up-regulate phase II enzymes in cardiomyocytes and counteract oxidative stress-induced apoptosis. Aim of the present study was the identification and characterization of novel sulforaphane targets in cardiomyocytes applying a proteomic approach. Two-dimensional gel electrophoresis and mass spectrometry were used to generate protein profiles of primary neonatal rat cardiomyocytes treated and untreated with 5 µM sulforaphane for 1-48 h. According to image analysis, 64 protein spots were found as differentially expressed and their functional correlations were investigated using the MetaCore program. We mainly focused on 3 proteins: macrophage migration inhibitory factor (MIF), CLP36 or Elfin, and glyoxalase 1, due to their possible involvement in cardioprotection. Validation of the time-dependent differential expression of these proteins was performed by western blotting. In particular, to gain insight into the cardioprotective role of the modulation of glyoxalase 1 by sulforaphane, further experiments were performed using methylglyoxal to mimic glycative stress. Sulforaphane was able to counteract methylglyoxal-induced apoptosis, ROS production, and glycative stress, likely through glyoxalase 1 up-regulation. In this study, we reported for the first time new molecular targets of sulforaphane, such as MIF, CLP36 and glyoxalase 1. In particular, we gave new insights into the anti-glycative role of sulforaphane in cardiomyocytes, confirming its pleiotropic behavior in counteracting cardiovascular diseases.  相似文献   
995.
Understanding the cellular response to DNA strand breaks is crucial to decipher the mechanisms maintaining the integrity of our genome. We present a novel method to visualize how the mobility of nuclear proteins changes in response to localized DNA damage. DNA strand breaks are induced via nonlinear excitation with femtosecond laser pulses at λ = 1050 nm in a 3D‐confined subnuclear volume. After a time delay of choice, protein mobility within this volume is analysed by two‐photon photoactivation of PA‐GFP fusion proteins at λ = 775 nm. By changing the position of the photoactivation spot with respect to the zone of lesion the influence of chromatin structure and of the distance from damage are investigated. As first applications we demonstrate a locally confined, time‐dependent mobility increase of histone H1.2, and a progressive retardation of the DNA repair factor XRCC1 at damaged sites. This assay can be used to map the response of nuclear proteins to DNA damage in time and space. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
996.
In this paper, 981 reared juveniles of gilthead seabream (Sparus aurata) were analysed, 721 of which were from a commercial hatchery located in Northern Italy (Venice, Italy) and 260 from the Hellenic Center for Marine Research (Crete, Greece). These individuals were from 4 different egg batches, for a total of 10 different lots. Each egg batch was split into two lots after hatching, and reared with two different methodologies: intensive and semi-intensive. All fish were subjected to processing for skeletal anomaly and meristic count analysis. The aims involved: (1) quantitatively and qualitatively analyzing whether differences in skeletal elements arise between siblings and, if so, what they are; (2) investigating if any skeletal bone tissue/ossification is specifically affected by changing environmental rearing conditions; and (3) contributing to the identification of the best practices for gilthead seabream larval rearing in order to lower the deformity rates, without selections. The results obtained in this study highlighted that: i) in all the semi-intensive lots, the bones having intramembranous ossification showed a consistently lower incidence of anomalies; ii) the same clear pattern was not observed in the skeletal elements whose ossification process requires a cartilaginous precursor. It is thus possible to ameliorate the morphological quality (by reducing the incidence of severe skeletal anomalies and the variability in meristic counts of dermal bones) of reared seabream juveniles by lowering the stocking densities (maximum 16 larvae/L) and increasing the volume of the hatchery rearing tanks (minimum 40 m3). Feeding larvae with a wide variety of live (wild) preys seems further to improve juvenile skeletal quality. Additionally, analysis of the morphological quality of juveniles reared under two different semi-intensive conditions, Mesocosm and Large Volumes, highlighted a somewhat greater capacity of Large Volumes to significantly augment the gap with siblings reared in intensive (conventional) modality.  相似文献   
997.
Microarray-based comparative genomic hybridization (array-CGH) led to the discovery of genetic abnormalities among patients with complex phenotype and normal karyotype. Also several apparently normal individuals have been found to be carriers of cryptic imbalances, hence the importance to perform parental investigations after the identification of a deletion/duplication in a proband. Here, we report the molecular cytogenetic characterization of two individuals in which the microdeletions/duplications present in their parents could have predisposed and facilitated the formation of de novo pathogenic different copy number variations (CNVs). In family 1, a 4-year-old girl had a de novo pathogenic 10.5 Mb duplication at 15q21.2q22.2, while her mother showed a 2.262 Mb deletion at 15q13.2q13.3; in family 2, a 9-year-old boy had a de novo 1.417 Mb deletion at 22q11.21 and a second paternal deletion of 247 Kb at 22q11.23 on the same chromosome 22. Chromosome 22 at band q11.2 and chromosome 15 at band q11q13 are considered unstable regions. We could hypothesize that 15q13.2q13.3 and 22q11.21 deletions in the two respective parents might have increased the risk of rearrangements in their children. This study highlights the difficulty to make genetic counseling and predict the phenotypic consequences in these situations.  相似文献   
998.
Plant viruses can produce direct and plant-mediated indirect effects on their insect vectors, modifying their life cycle, fitness and behavior. Viruses may benefit from such changes leading to enhanced transmission efficiency and spread. In our study, female adults of Bemisia tabaci were subjected to an acquisition access period of 72 h in Tomato yellow leaf curl virus (TYLCV)-infected and non-infected tomato plants to obtain viruliferous and non-viruliferous whiteflies, respectively. Insects that were exposed to virus-infected plants were checked by PCR to verify their viruliferous status. Results of the Ethovision video tracking bioassays indicated that TYLCV induced an arrestant behavior of B. tabaci, as viruliferous whitefly adults remained motionless for more time and moved slower than non-viruliferous whiteflies after their first contact with eggplant leaf discs. In fact, Electrical Penetration Graphs showed that TYLCV-viruliferous B. tabaci fed more often from phloem sieve elements and made a larger number of phloem contacts (increased number of E1, E2 and sustained E2 per insect, p<0.05) in eggplants than non-viruliferous whiteflies. Furthermore, the duration of the salivation phase in phloem sieve elements (E1) preceding sustained sap ingestion was longer in viruliferous than in non-viruliferous whiteflies (p<0.05). This particular probing behavior is known to significantly enhance the inoculation efficiency of TYLCV by B. tabaci. Our results show evidence that TYLCV directly manipulates the settling, probing and feeding behavior of its vector B. tabaci in a way that enhances virus transmission efficiency and spread. Furthermore, TYLCV-B. tabaci interactions are mutually beneficial to both the virus and its vector because B. tabaci feeds more efficiently after acquisition of TYLCV. This outcome has clear implications in the epidemiology and management of the TYLCV-B. tabaci complex.  相似文献   
999.
Relatively few studies have extensively analysed the genetic diversity of the runner bean through molecular markers. Here, we used six chloroplast microsatellites (cpSSRs) to investigate the cytoplasmic diversity of 331 European domesticated accessions of the scarlet runner bean (Phaseolus coccineus L.), including the botanical varieties albiflorus, bicolor and coccineus, and a sample of 49 domesticated and wild accessions from Mesoamerica. We further explored the pattern of diversity of the European landraces using 12 phenotypic traits on 262 individuals. For 158 European accessions, we studied the relationships between cpSSR polymorphisms and phenotypic traits. Additionally, to gain insights into the role of gene flow and migration, for a subset of 115 accessions, we compared and contrasted the results obtained by cpSSRs and phenotypic traits with those obtained in a previous study with 12 nuclear microsatellites (nuSSRs). Our results suggest that both demographic and selective factors have roles in the shaping of the population genetic structure of the European runner bean. In particular, we infer the existence of a moderate-to-strong cytoplasmic bottleneck that followed the expansion of the crop into Europe, and we deduce multiple domestication events for this species. We also observe an adaptive population differentiation in the phenology across a latitudinal gradient, which suggests that selection led to the diversification of the runner bean in Europe. The botanical varieties albiflorus, bicolor and coccineus, which are based solely on flower colour, cannot be distinguished based on these cpSSRs and nuSSRs, nor according to the 12 quantitative traits.  相似文献   
1000.
African American (AA) women are more likely than European American (EA) women to be diagnosed with early, aggressive breast cancer. Possible differences in innate immune pathways (e.g., inflammatory responses) have received little attention as potential mechanisms underlying this disparity. We evaluated distributions of selected genetic variants in innate immune pathways in AA and EA women, and examined their associations with breast cancer risk within the Women’s Circle of Health Study (WCHS). In stage I of the study (864 AA and 650 EA women) we found that genotype frequencies for 35 of 42 tested SNPs (18 candidate genes) differed between AAs and EAs (corroborated by ancestry informative markers). Among premenopausal AA women, comparing variant allele carriers to non-carriers, reduced breast cancer risk was associated with CXCL5-rs425535 (OR=0.61, P=0.02), while among EA women, there were associations with TNFA-rs1799724 (OR =2.31, P =0.002) and CRP-rs1205 (OR=0.54, P=0.01). For postmenopausal women, IL1B-rs1143627 (OR=1.80, P=0.02) and IL1B-rs16944 (OR=1.85, P =0.02) were associated with risk among EA women, with significant associations for TNFA-rs1799724 limited to estrogen receptor (ER) positive cancers (OR=2.0, P =0.001). However, none of the SNPs retained significance after Bonferroni adjustment for multiple testing at the level of P0.0012 (0.05/42) except for TNFA-rs1799724 in ER positive cancers. In a stage II validation (1,365 AA and 1,307 EA women), we extended evaluations for four SNPs (CCL2-rs4586, CRP-rs1205, CXCL5-rs425535, and IL1RN-rs4251961), which yielded similar results. In summary, distributions of variants in genes involved in innate immune pathways were found to differ between AA and EA populations, and showed differential associations with breast cancer according to menopausal or ER status. These results suggest that immune adaptations suited to ancestral environments may differentially influence breast cancer risk among EA and AA women.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号