首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   311篇
  免费   9篇
  2021年   6篇
  2020年   2篇
  2019年   2篇
  2018年   6篇
  2017年   2篇
  2016年   9篇
  2015年   10篇
  2014年   14篇
  2013年   20篇
  2012年   27篇
  2011年   21篇
  2010年   8篇
  2009年   18篇
  2008年   21篇
  2007年   15篇
  2006年   17篇
  2005年   13篇
  2004年   9篇
  2003年   11篇
  2002年   16篇
  2000年   4篇
  1999年   2篇
  1997年   4篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1992年   6篇
  1990年   2篇
  1989年   2篇
  1987年   2篇
  1984年   4篇
  1983年   4篇
  1982年   2篇
  1976年   1篇
  1974年   2篇
  1969年   1篇
  1966年   2篇
  1965年   2篇
  1962年   1篇
  1960年   1篇
  1959年   1篇
  1956年   2篇
  1944年   1篇
  1943年   2篇
  1942年   2篇
  1941年   2篇
  1940年   2篇
  1939年   1篇
  1938年   1篇
  1936年   1篇
排序方式: 共有320条查询结果,搜索用时 187 毫秒
31.
Global interest in sugarcane has increased significantly in recent years due to its economic impact on sustainable energy production. Sugarcane breeding and better agronomic practices have contributed to a huge increase in sugarcane yield in the last 30?years. Additional increases in sugarcane yield are expected to result from the use of biotechnology tools in the near future. Genetically modified (GM) sugarcane that incorporates genes to increase resistance to biotic and abiotic stresses could play a major role in achieving this goal. However, to bring GM sugarcane to the market, it is necessary to follow a regulatory process that will evaluate the environmental and health impacts of this crop. The regulatory review process is usually accomplished through a comparison of the biology and composition of the GM cultivar and a non-GM counterpart. This review intends to provide information on non-GM sugarcane biology, genetics, breeding, agronomic management, processing, products and byproducts, as well as the current technologies used to develop GM sugarcane, with the aim of assisting regulators in the decision-making process regarding the commercial release of GM sugarcane cultivars.  相似文献   
32.
Mechanisms that regulate the size and shape of bony structures are largely unknown. The molecular identification of the fin length mutant short fin (sof), which causes defects in the length of bony fin ray segments, may provide insights regarding the regulation of bone growth. In this report, we demonstrate that the sof phenotype is caused by mutations in the connexin43 (cx43) gene. This conclusion is supported by genetic mapping, reduced expression of cx43 in the original sof allele (sofb123), identification of missense mutations in three ENU-induced alleles, and by demonstration of partially abrogated cx43 function in sofb123 embryos. Expression of cx43 was identified in cells flanking the germinal region of newly growing segments as well as in the osteoblasts at segment boundaries. This pattern of cx43 expression in cells lateral to new segment growth is consistent with a model where cx43-expressing cells represent a biological ruler that measures segment size. This report identifies the first gene identification for a fin length mutation (sof) as well as the first connexin mutations in zebrafish, and therefore reveals a critical role for local cell-cell communication in the regulation of bone size and growth.  相似文献   
33.
Steroid hormones are believed to play an important role in prostate carcinogenesis, but epidemiological evidence linking prostate cancer and steroid hormone genes has been inconclusive, in part due to small sample sizes or incomplete characterization of genetic variation at the locus of interest. Here we report on the results of a comprehensive study of the association between HSD17B1 and prostate cancer by the Breast and Prostate Cancer Cohort Consortium, a large collaborative study. HSD17B1 encodes 17β-hydroxysteroid dehydrogenase 1, an enzyme that converts dihydroepiandrosterone to the testosterone precursor Δ5-androsterone-3β,17β-diol and converts estrone to estradiol. The Breast and Prostate Cancer Cohort Consortium researchers systematically characterized variation in HSD17B1 by targeted resequencing and dense genotyping; selected haplotype-tagging single nucleotide polymorphisms (htSNPs) that efficiently predict common variants in U.S. and European whites, Latinos, Japanese Americans, and Native Hawaiians; and genotyped these htSNPs in 8,290 prostate cancer cases and 9,367 study-, age-, and ethnicity-matched controls. We found no evidence that HSD17B1 htSNPs (including the nonsynonymous coding SNP S312G) or htSNP haplotypes were associated with risk of prostate cancer or tumor stage in the pooled multiethnic sample or in U.S. and European whites. Analyses stratified by age, body mass index, and family history of disease found no subgroup-specific associations between these HSD17B1 htSNPs and prostate cancer. We found significant evidence of heterogeneity in associations between HSD17B1 haplotypes and prostate cancer across ethnicity: one haplotype had a significant (p < 0.002) inverse association with risk of prostate cancer in Latinos and Japanese Americans but showed no evidence of association in African Americans, Native Hawaiians, or whites. However, the smaller numbers of Latinos and Japanese Americans in this study makes these subgroup analyses less reliable. These results suggest that the germline variants in HSD17B1 characterized by these htSNPs do not substantially influence the risk of prostate cancer in U.S. and European whites.  相似文献   
34.
A functional and basic method for the quantitative analysis of urine cortisol (F) and cortisone (E) using a Solid-Phase Extraction column and HPLC with ultraviolet detection is here described and validated to analyse urine samples. Urine specimens were analysed to study F and E relation and ratio in athletes and healthy sedentary subjects. The F and E concentrations in random urine specimens were significantly higher in the post exercise versus pre exercise condition in cyclists (F: 136+/-93 nmol/l versus 67+/-50 nmol/l (p<0.001); E: 797+/-400 nmol/l versus 408+/-252 nmol/l (p<0.001)). The F/E ratio was 0.18+/-0.11 versus 0.16+/-0.07, respectively, and a significant difference was only demonstrated comparing sedentary (0.11+/-0.07) and cyclist individuals at rest (p<0.05).  相似文献   
35.
Cells undergoing replicative senescence display an altered pattern of gene expression. Senescent fibroblasts show significant changes in the expression of mRNAs encoding extracellular matrix-remodeling proteins; among these mRNAs, the mRNA encoding fibromodulin is highly decreased in these cells. To understand the molecular basis of this phenomenon, we explored the regulatory mechanisms of the human fibromodulin gene. We found that fibromodulin gene promoter contains a cis-element, crucial for its basal expression, that forms a DNA-protein complex when exposed to nuclear extracts from exponentially growing human fibroblasts and not to extracts from cells undergoing senescence by repeated in vitro passages or by mild oxidative stress. The purification of this complex showed that it contains the damage-specific DNA-binding protein DDB-1. The latter is known to be induced by UV irradiation; therefore we checked whether fibromodulin gene promoter is regulated upon the exposure of the cells to UV rays. The results showed that, in exponentially growing fibroblasts, the promoter efficiency is increased by UV irradiation and the DDB-1-containing complex is robustly enriched in cells exposed to UV light. Accordingly, in these experimental conditions the endogenous fibromodulin mRNA accumulates to very high levels. On the contrary, senescent cells did not show any activation of the fibromodulin gene promoter, any induction of the DDB-1-containing complex, or any accumulation of fibromodulin mRNA. These phenomena are accompanied in senescent cells by a decrease of the UV-damaged DNA binding activity.  相似文献   
36.
Cytochrome c (cyto-c) added to isolated mitochondria promotes the oxidation of extra-mitochondrial NADH and the reduction of molecular oxygen associated to the generation of an electrochemical membrane potential available for ATP synthesis. The electron transport pathway activated by exogenous cyto-c molecules is completely distinct from the one catalyzed by the respiratory chain. Dextran sulfate (500 kDa), known to interact with porin (the voltage-dependent anion channel), other than to inhibit the release of ATP synthesized inside the mitochondria, greatly decreases the activity of exogenous NADH/cyto-c system of intact mitochondria but has no effect on the reconstituted system made of mitoplasts and external membrane preparations. The results obtained are consistent with the existence of specific contact sites containing cytochrome oxidase and porin, as components of the inner and the outer membrane respectively, involved in the oxidation of cytosolic NADH. The proposal is put forward that the bi-trans-membrane electron transport chain activated by cytosolic cyto-c becomes, in physio-pathological conditions: (i) functional in removing the excess of cytosolic NADH; (ii) essential for cell survival in the presence of an impairment of the first three respiratory complexes; and (iii) an additional source of energy at the beginning of apoptosis.  相似文献   
37.
Haemoglobins are sensitive to temperature and their properties mirror the thermal conditions encountered by species during their evolutionary histories. This paper provides data on molecular phylogeny of the haemoglobin chains of Cottoperca gobio, a notothenioid fish of sub-Antarctic latitudes, belonging to the basal family Bovichtidae. Unlike most Antarctic notothenioids, C. gobio has two major haemoglobins sharing the β chain. In the molecular phylogenetic analysis, the β chain is included in the clade of the “embryonic” or minor Antarctic globins. Although, in the majority of notothenioids, “embryonic” (minor) α and β globins are expressed in traces or small amounts in the adult stage, in C. gobio the present analysis supports the occurrence of a complete “switch” to exclusive expression of the embryonic β-globin gene in adult fish. The α and β chains sequences have been used to expand our knowledge of the evolution of notothenioid haemoglobins.The protein sequence data reported in this paper will appear in the UniProt Knowledge base under the accession number: P84652 (β chain), P84653 (α 1 chain).  相似文献   
38.
TLRs play a crucial role in early host defense against invading pathogens. In the seminiferous epithelium, Sertoli cells are the somatic nurse cells that mechanically segregate germ cell autoantigens by means of the blood-tubular barrier and create a microenvironment that protects germ cells from both interstitial and ascending invading pathogens. The objective of this study was to examine TLR expression and their functional responses to specific agonists in mouse Sertoli cells. We measured the expression of TLR2, TLR4, TLR5, and TLR6 mRNAs and confirmed by FACS analysis the presence of proteins TLR2 and TLR5 on which we focused our study. Stimulation of Sertoli cells with macrophage-activating lipopeptide-2, agonist of TLR2/TLR6, and with flagellin, agonist of TLR5, induces augmented secretion of the chemokine MCP-1. To assess the functional significance of MCP-1 production following TLR stimulation, conditioned medium from either macrophage-activating lipopeptide-2 or flagellin-treated Sertoli cells was tested for in vitro chemotaxis assay, and a significant increase of macrophage migration was observed in comparison with unstimulated conditioned medium. Moreover, we studied the role of NF-kappaB and of MAPKs in regulating TLR-mediated MCP-1 secretion by using inhibitors specific for each transduction pathway and we demonstrated a pivotal role of the IkappaB/NF-kappaB and JNK systems. In addition, TLR2/TLR6 and TLR5 stimulation induces increased ICAM-1 expression in Sertoli cells. Collectively, this study demonstrates the novel ability of Sertoli cells to potentially respond to a wide variety of bacteria through TLR stimulation.  相似文献   
39.
We present a novel analytical approach to describe biofilm processes considering continuum variation of both biofilm density and substrate effective diffusivity. A simple perturbation and matching technique was used to quantify biofilm activity using the steady-state diffusion-reaction equation with continuum variable substrate effective diffusivity and biofilm density, along the coordinate normal to the biofilm surface. The procedure allows prediction of an effectiveness factor, η, defined as the ratio between the observed rate of substrate utilization (reaction rate with diffusion resistance) and the rate of substrate utilization without diffusion limitation. Main assumptions are that (i) the biofilm is a continuum, (ii) substrate is transferred by diffusion only and is consumed only by microorganisms at a rate according to Monod kinetics, (iii) biofilm density and substrate effective diffusivity change in the x direction, (iv) the substrate concentration above the biofilm surface is known, and (v) the substratum is impermeable. With this approach one can evaluate, in a fast and efficient way, the effect of different parameters that characterize a heterogeneous biofilm and the kinetics of the rate of substrate consumption on the behavior of the biological system. Based on a comparison of η profiles the activity of a homogeneous biofilm could be as much as 47.8% higher than that of a heterogeneous biofilm, under the given conditions. A comparison of η values estimated for first order kinetics and η values obtained by numerical techniques showed a maximum deviation of 1.75% in a narrow range of modified Thiele modulus values. When external mass transfer resistance, is also considered, a global effectiveness factor, η(0) , can be calculated. The main advantage of the approach lies in the analytical expression for the calculation of the intrinsic effectiveness factor η and its implementation in a computer program. For the test cases studied convergence was achieved quickly after four or five iterations. Therefore, the simulation and scale-up of heterogeneous biofilm reactors can be easily carried out.  相似文献   
40.
Both ribosome-inactivating proteins (RIPs) and plant proteinase inhibitors, belong to protein families known to regulate cellular homeostasis and likely involved in plant defense. Nevertheless the interest in these protein classes is due to their potential use for the treatment of several important human diseases such as cancer. Thus, in the present study, type 1 ribosome-inactivating protein and wheat subtilisin/chymotrypsin inhibitor, were engineered into a chimeric protein with cytotoxic action selective for murine tumor cells, while lacking any appreciable toxicity on murine normal cells. This chimeric protein selectively sensitizes to apoptotic death cells derived from Simian-virus-40-transformed mouse fibroblasts (SVT2 cells). The cytotoxicity of this new recombinant product has been detected also on three different human malignant cells. Therefore action on tumor cells of this protein could represent a potentially very attractive novel tool for anticancer drug design.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号