首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   308篇
  免费   12篇
  2024年   1篇
  2023年   9篇
  2022年   7篇
  2021年   25篇
  2020年   10篇
  2019年   7篇
  2018年   23篇
  2017年   25篇
  2016年   18篇
  2015年   16篇
  2014年   18篇
  2013年   19篇
  2012年   30篇
  2011年   20篇
  2010年   14篇
  2009年   10篇
  2008年   20篇
  2007年   11篇
  2006年   9篇
  2005年   8篇
  2004年   14篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1991年   1篇
排序方式: 共有320条查询结果,搜索用时 15 毫秒
51.
The present study investigated the effects of gas-tight and gas-permeable culture containers and different sucrose concentrations, as well as sucrose and mannitol combinations on the development of an effective in vitro slow growth storage protocol (at 4 °C, in darkness) for ‘Gisela®5’ shoot cultures. ‘Gisela®5’ is the most widely used cherry rootstock in Europe. This dwarf triploid hybrid has many advantages over the conventional cherry rootstocks. Optimizations for the cold storage of ‘Gisela®5’ in vitro shoot cultures included use of storage medium supplemented with 10, 20, 30, 45, and 60 g L?1 sucrose and sucrose (15, 30 g L?1) and mannitol (15 g L?1) combinations, contained in gas-tight glass jars and gas-permeable ‘Star Pac?’ bags. Cold storage was prolonged to 12 months, during which in every 3 months, cultures were evaluated. Possibility of 16 month-cold storage in gas-tight glass jars was also explored, during which gas chromatographic analysis was performed for the detection of CO2 and ethylene accumulation for the first 5 months of cold storage. Our results showed that both the 12- and 16-month conservations were possible, especially when 45 or 60 g L?1 sucrose was supplemented to storage medium, contained in glass jars. Mannitol inclusion to the storage medium was also effective to reduce the metabolic activity of the shoot cultures during storage; however, it did not have a significant positive influence on shoot quality in post-conservation.  相似文献   
52.
ABSTRACT

This article analyses network organizations founded by descendants of Turkish migrants in the Netherlands and France. By surveying members of two such organizations and interviewing several of their board members, we learn how these organizations function, their success in building and extending social networks, and their efficacy at improving labour market prospects for young second-generation professionals of Turkish descent. Our findings reveal a hybrid structure, whereby the organizations gear many of their activities towards mainstream society. In comparison to traditional immigrant organizations, their attitude is more open to other social groups, yet they still have a clear stronghold in the ethnic immigrant community. We conclude that ethnicity is not the main element in the successful second generation’s organizing process. Factors such as educational trajectories, professional ambitions, feelings of responsibility for other members and newly acquired socioeconomic status are the main reasons for this group to organize.  相似文献   
53.
Evidences about the preventive and therapeutic effects of boron compounds on cancer have been increasing in the last years. Although calcium fructoborate (CaFB) is used as a nutritional supplement, data about its preventive and therapeutic effects on neoplastic transformations are limited. In the present study, the various concentrations of CaFB were applied to the MDA-MB-231 metastatic breast cancer cell line. First, we examined the cytotoxic effect and IC50 value of CaFB by MTT assay. For the evaluation of the DNA damage, apoptosis and metastatic potential, expression levels of ATM, pATM, PARP, p53, p-p53, caspase-3, caspase-9, and VEGF were investigated by using immunoblotting and immunohistochemical methods. Cell viability was significantly reduced at 50 μM CaFB treatment. pATM, p-p53, and caspase-9 levels increased significantly in all groups; furthermore, there was approximately 12.5-, 2.4-, and 10.7-fold increase, respectively, for 100 μM CaFB treatment. ATM and p53 levels did not change with CaFB treatment, but PARP levels significantly 2.5-fold decreased. While VEGF immunoreactivity decreased in all groups, significant increase in caspase-3 immunoreactivity was observed only in the group treated with 50 μM CaFB (p < 0,001). Our results imply that CaFB may have therapeutic potential as well as preventive benefits in cancer.  相似文献   
54.
Borrelia burgdorferi infection is the most frequent tick-transmitted disease worldwide. Our aim was to assess the seroprevalence of B. burgdorferi infection among forestry workers and farmers in Duzce, in the north-west region of Turkey. Blood samples from 349 forestry workers and farmers and 193 healthy blood donors were obtained to determine the presence of antibodies to B. burgdorferi. A two-step testing strategy was used; the sera were initially tested by ELISA and then by Western blot (WB) IgG. Demographic data regarding residence, age, gender, profession, tick bite history, contact with animals, and symptoms involving the skin, nervous system, and osteoarticular system were collected by questionnaire. All results were evaluated statistically using the chi2 test. The seroprevalence of B. burgdorferi was 10.9% (n=38) in forestry workers and farmers and 2.6% (n=5) in blood donors by ELISA, with a statistically significant difference (p<0.001). Seropositivity rates were related to age, gender, and common risk factors for the disease. IgG seropositivity was confirmed in four (1.1%) sera by WB. In this first seroepidemiological report from the northwest region of Turkey, tick bite exposure was found to be high, whereas B. burgdorferi infection was not common. Preventive measures against tick exposure and further studies to determine the distribution of Lyme disease in Turkey are proposed.  相似文献   
55.
The energy security needs of energy importing nations continue to escalate. It is clear that biofuels can help meet some of the increasing need for energy. Theoretically, these can be produced from a variety of biological materials, including agricultural residues (such as corn stover and wheat straw), perennial grasses, legumes, algae, and other biological materials. Currently, however, the most heavily utilized material is corn starch. Industrial fuel ethanol production in the US primarily uses corn, because it is readily converted into fuel at a relatively low cost compared to other biomass sources. The production of corn-based ethanol in the US is dramatically increasing. As the industry continues to grow, the amount of byproducts and coproducts also increases. At the moment, the nonfermentable residues (which are dried and sold as distillers dried grains with solubles – DDGS) are utilized only as livestock feed. The sale of coproducts provides ethanol processors with a substantial revenue source and significantly increases the profitability of the production process. Even though these materials are used to feed animals in local markets, as the size and scope of the industry continues to grow, the need to ship large quantities of coproducts grows as well. This includes both domestic as well as international transportation. Value-added processing options offer the potential to increase the sustainability of each ethanol plant, and thus the industry overall. However, implementation of new technologies will be dependent upon how their costs interact with current processing costs and the logistics of coproduct deliveries. The objective of this study was to examine some of these issues by developing a computer model to determine potential cost ramifications of using various alternative technologies during ethanol processing. This paper focuses specifically on adding a densification unit operation (i.e., pelleting) to produce value-added DDGS at a fuel ethanol manufacturing plant. We have examined the economic implications of pelleting DDGS for varying DDGS production rates (100–1000 tons/d) and pelleting rates (0–100%), for a series of DDGS sales prices ($50–$200/ton). As the proportion of pelleting increases, the cost of transporting DDGS to distant markets drastically declines, because the rail cars can be filled to capacity. For example, at a DDGS sales price of $50/ton, 100% pelleting will reduce shipping costs (both direct and indirect) by 89% compared to shipping the DDGS in bulk form (i.e., no pelleting), whereas at a DDGS sales price of $200/ton, it will reduce costs by over 96%. It is clear that the sustainability of the ethanol industry can be improved by implementing pelleting technology for the coproducts, especially at those plants that ship their DDGS via rail.  相似文献   
56.

Objectives

Left atrium (LA) plays an important role in left ventricular filling. It is well known that right ventricular apical pacing has unfavorable effects on ventricular systolic and diastolic performance. The aim of this study is to evaluate the LA mechanical functions with 2D echocardiography in patients with a permanent pacemaker after short time ventricular pacing.

Design

Echocardiographic examination was performed in 38 patients (mean age 63.0± 10.9, 18 female) with dual chamber pacemakers or defibrillators (< 20% ventricular pacing within previous 6 months, all of them on sinus rhythm) before and after 4 hours > 90% ventricular pacing at 70 beats per minute in DDD mode with an optimal AV interval. Left atrial volumes (LAV) including at the time of mitral valve opening (Vmax), at closure (Vmin), and at the onset of atrial systole (Volp) were measured. The passive emptying, conduit, active emptying and total emptying volume, stroke volumes were also calculated.

Results

No significant differences were noted at baseline and after pacing for absolute Vmax, Volp, passive emptying, conduit, active emptying, total emptying volumes as well as the volumes indexed to body surface area (p >0.05).

Conclusions

Short - time RV pacing seems to have no acute effects on left atrial mechanical functions.  相似文献   
57.
We aimed to determine the molecular mechanisms of antibiotic resistance in coliforms isolated from ten rivers in northern region of Turkey. A total of 183 isolates were tested for antimicrobial susceptibility by disk diffusion and agar dilution methods. Resistance to ampicillin, streptomycin, trimethoprim, tetracycline, and chloramphenicol was detected in 58%, 51.9%, 24%, 28.4%, and 12.5%, respectively. Twelve (6.5%) phylogenetically distant organisms were detected to harbor self-transmissible plasmids ranging 52 to >147 kb in sizes. Resistances to ampicillin, tetracycline, trimethoprim, streptomycin, and nalidixic acid were commonly transferable traits. Transferable nalidixic acid-resistant strains harbored qnrS gene, which was the first report of plasmid-mediated quinolone resistance in bacteria of environmental origin in Turkey. Fourteen and five coliforms harbored class 1 and class 2 integrons, respectively, and some of them were located on transferable plasmids. Sequence analyses of variable regions of the class 1 and 2 integrons harbored various gene cassettes, dfrA1, dfr2d, dfrA7, dfrA16, dfrA17, aadA1, aadA5, bla oxA-30, and sat1. A gene cassette array, dfrA16 has been demonstrated for the first time in a Citrobacter koseri isolate. Class 1 and class 2-bearing strains were clustered in different groups by BOX-PCR fingerprinting. Rivers in the northern Turkey may act as receptacle for the multi-drug resistant enterobacteria and can serve as reservoirs of the antimicrobial resistance determinants in the environment. The actual risk to public health is the transfer of resistance genes from the environmental bacteria to human pathogens. This study was presented in part at the 2nd World Conference on Magic Bullets, held October 3–5, 2008 in Nurnberg, Germany.  相似文献   
58.
HMA2 is a Zn2+-ATPase from Arabidopsis thaliana. It contributes to the maintenance of metal homeostasis in cells by driving Zn2+ efflux. Distinct from P1B-type ATPases, plant Zn2+-ATPases have long C-terminal sequences rich in Cys and His. Removal of the 244 amino acid C terminus of HMA2 leads to a 43% reduction in enzyme turnover without significant effect on the Zn2+ K(1/2) for enzyme activation. Characterization of the isolated HMA2 C terminus showed that this fragment binds three Zn2+ with high affinity (Kd = 16 +/- 3 nM). Circular dichroism spectral analysis indicated the presence of 8% alpha-helix, 45% beta-sheet, and 48% random coil in the C-terminal peptide with noticeable structural changes upon metal binding (8% alpha-helix, 39% beta-sheet, and 52% random coil). Zn K-edge XAS of Zn-C-MBD in the presence of one equivalent of Zn2+ shows that the average zinc complex formed is composed of three His and one Cys residues. Upon the addition of two extra Zn2+ ions per C-MBD, these appear coordinated primarily by His residues thus, suggesting that the three Zn2+ binding domains might not be identical. Modification of His residues with diethyl pyrocarbonate completely inhibited Zn2+ binding to the C terminus, pointing out the importance of His residues in Zn2+ coordination. In contrast, alkylation of Cys with iodoacetic acid did not prevent Zn2+ binding to the HMA2 C terminus. Zn K-edge XAS of the Cys-alkylated protein was consistent with (N/O)4 coordination of the zinc site, with three of those ligands fitting for His residues. In summary, plant Zn2+-ATPases contain novel metal binding domains in their cytoplasmic C terminus. Structurally distinct from the well characterized N-terminal metal binding domains present in most P1B-type ATPases, they also appear to regulate enzyme turnover rate.  相似文献   
59.
Sleep and Biological Rhythms - This study aimed to identify the symptoms and prevalence of snoring among primary school children in Ankara, Turkey, as reported by their parents and to determine the...  相似文献   
60.
Intracellular signaling mechanisms in red blood cells (RBCs) involve various protein kinases and phosphatases and enable rapid adaptive responses to hypoxia, metabolic requirements, oxidative stress, or shear stress by regulating the physiological properties of the cell. Protein phosphorylation is a ubiquitous mechanism for intracellular signal transduction, volume regulation, and cytoskeletal organization in RBCs. Spectrin-based cytoskeleton connects integral membrane proteins, band 3 and glycophorin C to junctional proteins, ankyrin and Protein 4.1. Phosphorylation leads to a conformational change in the protein structure, weakening the interactions between proteins in the cytoskeletal network that confers a more flexible nature for the RBC membrane. The structural organization of the membrane and the cytoskeleton determines RBC deformability that allows cells to change their ability to deform under shear stress to pass through narrow capillaries. The shear stress sensing mechanisms and oxygenation-deoxygenation transitions regulate cell volume and mechanical properties of the membrane through the activation of ion transporters and specific phosphorylation events mediated by signal transduction. In this review, we summarize the roles of Protein kinase C, cAMP-Protein kinase A, cGMP-nitric oxide, RhoGTPase, and MAP/ERK pathways in the modulation of RBC deformability in both healthy and disease states. We emphasize that targeting signaling elements may be a therapeutic strategy for the treatment of hemoglobinopathies or channelopathies. We expect the present review will provide additional insights into RBC responses to shear stress and hypoxia via signaling mechanisms and shed light on the current and novel treatment options for pathophysiological conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号