首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   246篇
  免费   23篇
  2023年   1篇
  2022年   5篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2018年   4篇
  2016年   5篇
  2015年   8篇
  2014年   8篇
  2013年   9篇
  2012年   25篇
  2011年   9篇
  2010年   9篇
  2009年   14篇
  2008年   20篇
  2007年   26篇
  2006年   20篇
  2005年   16篇
  2004年   7篇
  2003年   11篇
  2002年   10篇
  2001年   5篇
  2000年   7篇
  1999年   5篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   4篇
  1990年   5篇
  1989年   1篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   5篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1980年   2篇
排序方式: 共有269条查询结果,搜索用时 31 毫秒
61.
The steady-state mRNA levels of the proliferating cell nuclear antigen (PCNA) gene are growth regulated. We have begun to identify the elements in the human PCNA gene that participate in its growth regulation by transfecting appropriate constructs in BALB/c3T3 cells. The results can be summarized as follows. (i) The 400 base pairs of the 5'-flanking sequence of the human PCNA gene upstream of the preferred cap site are sufficient for directing expression of a heterologous cDNA (S. Travali, D.-H. Ku, M. G. Rizzo, L. Ottavio, R. Baserga, and B. Calabretta, J. Biol. Chem. 264:7466-7472, 1989). (ii) Intron 4 is necessary for the proper regulation of PCNA mRNA levels in G0 cells. Removal of intron 4 leads to abnormally high levels of PCNA mRNA in serum-deprived cells, although the shortened PCNA gene with its own promoter is still responsive to serum stimulation. (iii) The presence of introns also increases the steady-state levels of PCNA mRNA in proliferating cells. These results are especially interesting for two reasons: (i) because of the extensive sequence similarities among introns and between introns and exons of the human PCNA gene, and (ii) because, usually, the presence of introns leads to increased expression, whereas in this case, removal of intron 4 caused an increase in mRNA levels, and this occurred only in quiescent cells.  相似文献   
62.
Cryptococcus neoformans is a human pathogenic fungus with a capsule composed primarily of glucuronoxylomannan (GXM) that is important for virulence. Current views of GXM structure postulate a polymer composed of repeating mannose trisaccharide motifs bearing a single beta(1,2) glucuronic acid with variable xylose and O-acetyl substitutions to form six triads. GXM from different strains is notoriously variable in triad composition, but it is not known if the polymer consists of one or more motif-repeating units. We investigated the polymeric organization of GXM by using mass spectrometry to determine if its compositional motif arrangement was similar to that of bacterial capsular polysaccharides, namely, a polymer of a single repeating unit. The results were consistent with, and confirmatory for, the current view that the basic unit of GXM is a repeating mannose trisaccharide motif, but we also found evidence for the copolymerization of different GXM repeating units in one polysaccharide molecule. Analysis of GXM from isogenic phenotypic switch variants suggested structural differences caused by glucuronic acid positional effects, which implied flexibility in the synthetic pathway. Our results suggest that cryptococcal capsule synthesis is fundamentally different from that observed in prokaryotes and employs a unique eukaryotic approach, which theoretically could synthesize an infinite number of structural combinations. The biological significance of this capsule construction scheme is that it is likely to confer a powerful avoidance strategy for interactions with the immune system and phagocytic environmental predators. Consistent with this premise, the antigenic variation of a capsular epitope recognized by a nonprotective antibody was observed under different growth conditions.  相似文献   
63.
The capsular components of the human pathogen Cryptococcus neoformans are transported to the extracellular space and then used for capsule enlargement by distal growth. It is not clear, however, how the glucuronoxylomannan (GXM) fibers are incorporated into the capsule. In the present study, we show that concentration of C. neoformans culture supernatants by ultrafiltration results in the formation of highly viscous films containing pure polysaccharide, providing a novel, nondenaturing, and extremely rapid method to isolate extracellular GXM. The weight-averaged molecular mass of GXM in the film, determined using multiangle laser light scattering, was ninefold smaller than that of GXM purified from culture supernatants by differential precipitation with cetyl trimethyl ammonium bromide (CTAB). Polysaccharides obtained either by ultrafiltration or by CTAB-mediated precipitation showed different reactivities with GXM-specific monoclonal antibodies. Viscosity analysis associated with inductively coupled plasma mass spectrometry and measurements of zeta potential in the presence of different ions implied that polysaccharide aggregation was a consequence of the interaction between the carboxyl groups of glucuronic acid and divalent cations. Consistent with this observation, capsule enlargement in living C. neoformans cells was influenced by Ca(2+) in the culture medium. These results suggest that capsular assembly in C. neoformans results from divalent cation-mediated self-aggregation of extracellularly accumulated GXM molecules.  相似文献   
64.
The mechanisms by which macromolecules are transported through the cell wall of fungi are not known. A central question in the biology of Cryptococcus neoformans, the causative agent of cryptococcosis, is the mechanism by which capsular polysaccharide synthesized inside the cell is exported to the extracellular environment for capsule assembly and release. We demonstrate that C. neoformans produces extracellular vesicles during in vitro growth and animal infection. Vesicular compartments, which are transferred to the extracellular space by cell wall passage, contain glucuronoxylomannan (GXM), a component of the cryptococcal capsule, and key lipids, such as glucosylceramide and sterols. A correlation between GXM-containing vesicles and capsule expression was observed. The results imply a novel mechanism for the release of the major virulence factor of C. neoformans whereby polysaccharide packaged in lipid vesicles crosses the cell wall and the capsule network to reach the extracellular environment.  相似文献   
65.
The most distinctive feature of the human pathogenic fungus is a polysaccharide capsule that is essential for virulence and is composed primarily of glucuronoxylomannan (GXM) and galactoxylomannan (GalXM). GXM mediates multiple deleterious effects on host immune function, yet relatively little is known about its physical properties. The average mass of Cryptococcus neoformans GXM from four antigenically different strains ranged from 1.7 to 7 x 10(6) daltons as calculated from Zimm plots of light-scattering data. GalXM was significantly smaller than GXM, with an average mass of 1 x 10(5) daltons. These molecular masses imply that GalXM is the most numerous polysaccharide in the capsule on a molar basis. The radius of gyration of the capsular polysaccharides ranged between 68 and 208 nm. Viscosity measurements suggest that neither polysaccharide altered fluid dynamics during infection since GXM behaved in solution as a polyelectrolyte and GalXM did not increase solution viscosity. Immunoblot analysis indicated heterogeneity within GXM. In agreement with this, scanning transmission electron microscopy of GXM preparations revealed a tangled network of two different types of molecules. Mass per length measurements from light scattering and scanning transmission electron microscopy were consistent and suggested GXM molecules self-associate. A mechanism for capsule growth is proposed based on the extracellular release and entanglement of GXM molecules.  相似文献   
66.
The capsule of Cryptococcus neoformans can undergo dramatic enlargement, a phenomenon associated with virulence. A prior study that used Ab to the capsule as a marker for older capsular material concluded that capsule growth involved the intermixing of new and old capsular material with displacement of older capsular polysaccharide towards the surface. Here we have revisited that question using complement (C), which binds to capsular polysaccharide covalently, and cannot redistribute by dissociation and binding at different sites. The experimental approach involved binding of C to cells with small capsules, inducing capsule growth, and following the location of C relative to the cell wall as the capsule enlarged. C remained close to the cell wall during capsule growth, indicating that capsule enlargement occurred by addition of new polysaccharide near the capsule edge. This conclusion was confirmed by an independent method that employed radioactive metabolic labelling of newly synthesized capsule with 3H-mannose followed by gradual capsular stripping with gamma-radiation. Capsule growth proceeded to a certain size, which was a function of cell size, and was not degraded when the cells were transferred to a non-inducing medium. During budding, an opening appeared in the capsule of the mother cell that permitted the nascent bud to separate. Scanning EM suggested that a physical separation formed between the capsules of the mother and daughter cells during budding, which may avoid mixture between both capsules. Our results indicate that C. neoformans capsular enlargement also occurs by apical growth and that budding results in capsular rearrangements.  相似文献   
67.
Cryptococcus neoformans (Cn) is an encapsulated yeast that is a facultative intracellular pathogen and a frequent cause of human disease. The interaction of Cn with alveolar macrophages is critical for containing the infection , but Cn can also replicate intracellularly and lyse macrophages . Cn has a unique intracellular pathogenic strategy that involves cytoplasmic accumulation of polysaccharide-containing vesicles and intracellular replication leading to the formation of spacious phagosomes in which multiple cryptococcal cells are present . The Cn intracellular pathogenic strategy in macrophages and amoebas is similar, leading to the proposal that it originated as a mechanism for survival against phagocytic predators in the environment . Here, we report that under certain conditions, including phagosomal maturation, possible actin depolymerization, and homotypic phagosome fusion, Cn can exit the macrophage host through an extrusion of the phagosome, while both the released pathogen and host remain alive and able to propagate. The phenomenon of "phagosomal extrusion" indicates the existence of a previously unrecognized mechanism whereby a fungal pathogen can escape the intracellular confines of mammalian macrophages to continue propagation and, possibly, dissemination.  相似文献   
68.
Protective antigen (PA), the binding subunit of anthrax toxin, is the major component in the current anthrax vaccine, but the fine antigenic structure of PA is not well defined. To identify linear neutralizing epitopes of PA, 145 overlapping peptides covering the entire sequence of the protein were synthesized. Six monoclonal antibodies (mAbs) and antisera from mice specific for PA were tested for their reactivity to the peptides by enzyme-linked immunosorbent assays. Three major linear immunodominant B-cell epitopes were mapped to residues Leu156 to Ser170, Val196 to Ile210, and Ser312 to Asn326 of the PA protein. Two mAbs with toxin-neutralizing activity recognized two different epitopes in close proximity to the furin cleavage site in domain 1. The three-dimensional complex structure of PA and its neutralizing mAbs 7.5G and 19D9 were modeled using the molecular docking method providing models for the interacting epitope and paratope residues. For both mAbs, LeTx neutralization was associated with interference with furin cleavage, but they differed in effectiveness depending on whether they bound on the N- or C-terminal aspect of the cleaved products. The two peptides containing these epitopes that include amino acids Leu156–Ser170 and Val196–Ile210 were immunogenic and elicited neutralizing antibody responses to PA. These results identify the first linear neutralizing epitopes of PA and show that peptides containing epitope sequences can elicit neutralizing antibody responses, a finding that could be exploited for vaccine design.Bacillus anthracis is a Gram-positive, facultatively anaerobic, rod-shaped bacterium that secretes a variety of toxins, including anthrax toxin. This toxin is made up of three proteins as follows: protective antigen (PA),3 edema factor (EF), and lethal factor (LF). Like other binary toxins, anthrax toxin follows the same pattern where distinct subunits are involved in the different steps at which it can act. The B subunit (PA) is involved in receptor binding and cellular internalization into the cytoplasm, whereas the A subunit (EF and/or LF) bears the enzymatic activity (1). Anthrax can occur naturally in animals by spore transmission via ingestion, inhalation, or an open skin wound, but it can also be a result of bioterrorism and biological warfare (2).PA is the component of the currently licensed anthrax vaccine that elicits protective antibodies. Recent studies have demonstrated that a strong humoral response to truncated recombinant PA contributes to a protective immune response to anthrax (3, 4). Accordingly, there is considerable interest in ascertaining the location and immunogenicity of B-cell epitopes on the PA molecule. The development of numerous monoclonal antibodies (mAbs) to different epitopes on the PA molecule that influence PA functions, in conjunction with epitope mapping, has provided an opportunity to study the fine antigenic structure of PA. Most of these epitopes have been defined in mice (58), in macaques (9), in rabbits (10), as well as in vaccinated humans (11). Consequently, the epitopes described thus far are localized to three discrete regions within the PA. These regions correspond to the 2β2–2β3 loop of domain 2, the domain 3-domain 4 boundary, and the small loop of domain 4. The 2β2–2β3 loop of domain 2 is responsible for mediating membrane insertion, and many neutralizing murine mAbs target this region (5, 8). The boundary between domains 3 and 4, which does not have a known functional activity, has been suggested as a region recognized by polyclonal antibodies from vaccinated humans and rabbits (6, 12). The cellular receptor binding region is localized to the small loop of domain 4, and this region has been described to be recognized by two neutralizing mAbs (7, 9). With the exception of a neutralizing mAb that bound to PA20 (13), no B-cell epitopes have been reported in domain 1. Therefore, identification of further dominant antigenic epitopes is pivotal for understanding the minimal immunogenic region of PA that will allow for precise direction of potent immune responses.Two mAbs to PA have been reported previously by our laboratory, one known as 7.5G binds to domain 1 and can neutralize the cytotoxic activity of lethal toxin (LeTx) (13). The other, mAb 10F4, binds to domain 4 and has weak neutralizing activity. In addition, we now describe four new anti-PA mAbs, of which only one neutralizes LeTx. The characterization of the B-cell epitopes in PA recognized by protective and nonprotective mAbs is important to better understand the antigenic structure of this toxin, and such information is potentially useful for the design of vaccines and passive immune therapies against B. anthracis. Because PA has been identified as an effective subunit vaccine, we wanted to identify the specific epitopes that provide the protection and use them as immunogens. Using mAbs and 145 overlapping peptides covering the entire sequence of PA, we identify the first linear neutralizing epitopes in domain 1 of PA, and we demonstrate that two peptides containing epitopes in domain 1 were capable of inducing strong LeTx-neutralizing antibody responses.  相似文献   
69.
The cell wall of pathogenic fungi such as Cryptococcus neoformans , provides a formidable barrier to secrete virulence factors that produce host cell damage. To study secretion of virulence factors to the cell periphery, sec6 RNAi mutant strains of C. neoformans were tested for virulence factor expression. The studies reported here show that SEC6 RNAi mutant strains were defective in a number of virulence factors including laccase, urease as well as soluble polysaccharide and demonstrated attenuated virulence in mice. Further analysis by transmission electron microscopy detected the production of abundant extracellular exosomes in wild-type strains containing empty plasmid, but a complete absence in the i SEC6 strain. In addition, a green fluorescent protein–laccase fusion protein demonstrated aberrant localization within cytoplasmic vesicles in i SEC6 strains. In contrast, i SEC6 strains retained normal growth at 37°C, as well as substantially normal capsule formation, phospholipase activity and total secreted protein. These results provide the first molecular evidence for the existence of fungal exosomes and associate these vesicles with the virulence of C. neoformans .  相似文献   
70.
Microbial capsules are important for virulence, but their architecture and physical properties are poorly understood. The human pathogenic fungus Cryptococcus neoformans has a large polysaccharide capsule that is necessary for virulence and is the target of protective antibody responses. To study the C. neoformans capsule we developed what we believe is a new approach whereby we probed the capsular elastic properties by applying forces using polystyrene beads manipulated with optical tweezers. This method allowed us to determine the Young's modulus for the capsule in various conditions that affect capsule growth. The results indicate that the Young's modulus of the capsule decreases with its size and increases with the Ca2+ concentration in solution. Also, capsular polysaccharide manifests an unexpected affinity for polystyrene beads, a property that may function in attachment to host cells and environmental structures. Bead probing with optical tweezers provides a new, nondestructive method that may have wide applicability for studying the effects of growth conditions, immune components, and drugs on capsular properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号