首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   545篇
  免费   36篇
  581篇
  2023年   4篇
  2022年   12篇
  2021年   13篇
  2020年   9篇
  2019年   8篇
  2018年   15篇
  2017年   12篇
  2016年   18篇
  2015年   28篇
  2014年   29篇
  2013年   50篇
  2012年   57篇
  2011年   62篇
  2010年   40篇
  2009年   19篇
  2008年   31篇
  2007年   29篇
  2006年   16篇
  2005年   13篇
  2004年   12篇
  2003年   14篇
  2002年   12篇
  2001年   8篇
  2000年   2篇
  1999年   4篇
  1998年   7篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1990年   7篇
  1989年   5篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1974年   3篇
排序方式: 共有581条查询结果,搜索用时 15 毫秒
61.
The preparation and electrochemical characterization of a new material consisting of carbon coated ZnFe2O4 nanoparticles is presented. This material, which offers an interesting combination of alloying and conversion mechanisms, is capable of hosting up to nine equivalents of lithium per unit formula, corresponding to an exceptional specific capacity, higher than 1000 mAh g?1. Composite electrodes of such a material, prepared using environmentally friendly sodium carboxymethyl cellulose as binder, showed the highest, ever reported, specific capacity and high rate performance upon long‐term testing. Furthermore, in situ X‐ray diffraction analysis allowed identifying the reduction process occurring upon initial lithiation.  相似文献   
62.
We have investigated conformational changes of the purified maltose ATP-binding cassette transporter (MalFGK(2)) upon binding of ATP. The transport complex is composed of a heterodimer of the hydrophobic subunits MalF and MalG constituting the translocation pore and of a homodimer of MalK, representing the ATP-hydrolyzing subunit. Substrate is delivered to the transporter in complex with periplasmic maltose-binding protein (MalE). Cross-linking experiments with a variant containing an A85C mutation within the Q-loop of each MalK monomer indicated an ATP-induced shortening of the distance between both monomers. Cross-linking caused a substantial inhibition of MalE-maltose-stimulated ATPase activity. We further demonstrated that a mutation affecting the "catalytic carboxylate" (E159Q) locks the MalK dimer in the closed state, whereas a transporter containing the "ABC signature" mutation Q140K permanently resides in the resting state. Cross-linking experiments with variants containing the A85C mutation combined with cysteine substitutions in the conserved EAA motifs of MalF and MalG, respectively, revealed close proximity of these residues in the resting state. The formation of a MalK-MalG heterodimer remained unchanged upon the addition of ATP, indicating that MalG-EAA moves along with MalK during dimer closure. In contrast, the yield of MalK-MalF dimers was substantially reduced. This might be taken as further evidence for asymmetric functions of both EAA motifs. Cross-linking also caused inhibition of ATPase activity, suggesting that transporter function requires conformational changes of both EAA motifs. Together, our data support ATP-driven MalK dimer closure and reopening as crucial steps in the translocation cycle of the intact maltose transporter and are discussed with respect to a current model.  相似文献   
63.
The aim of this work was to define the possible occurrence of hematological changes during the course of a chronic ingestion of 137Cs. A mouse model was used, with ingestion through drinking water with a cesium concentration of 20 kBq l−1. Ingestion started in parent animals before mating, and 137Cs intake and its effect on the hematopoietic system was studied in offspring at various ages between birth and 20 weeks. 137Cs content was measured in various organs, indicating that 137Cs was distributed throughout the organism including lympho-hematopoietic organs, i.e., femurs, spleen and thymus. However, we did not observe any effect on the hematopoietic system, whatever the parameter used. In fact, blood cell counts, mononuclear cell counts and progenitor frequency in bone marrow and spleen, and Flt3-ligand, Erythropoietin, G-CSF and SDF-1 concentration in plasma remained unchanged when compared to control animals. Moreover, phenotypic analysis did not show any change in the proportions of bone marrow cell populations. These results indicate that, although 137Cs was found in all organs implicated in the hematopoietic system, this did not induce any changes in bone marrow function.  相似文献   
64.
Dolgin E 《Nature medicine》2010,16(11):1237-1240
  相似文献   
65.
66.
Two forms of the squat lobster Pleuroncodes monodon can be found along the Pacific coast of South America: a smaller pelagic and a larger benthic form that live respectively in the northern and southern areas of the geographic distribution of the species. The morphological and life history differences between the pelagic and benthic forms could be explained either by genetic differentiation or phenotypic plasticity. In the latter case it would correspond to a heterochronic phenotypic plasticity that is fixed in different environments (phenotype fixation). The aim of this study was to evaluate whether the two forms are genetically differentiated or not; and thus to infer the underlying basis-heritable or plastic-of the existence of the two forms. Based on barcoding data of mitochondrial DNA (the COI gene), we show that haplotypes from individuals of the pelagic and benthic forms comprise a single genetic unit without genetic differentiation. Moreover, the data suggest that all studied individuals share a common demographic history of recent and sudden population expansion. These results strongly suggest that the differences between the two forms are due to phenotypic plasticity.  相似文献   
67.
68.
The Uup protein belongs to a subfamily of soluble ATP-binding cassette (ABC) ATPases that have been implicated in several processes different from transmembrane transport of molecules, such as transposon precise excision. We have demonstrated previously that Escherichia coli Uup is able to bind DNA. DNA binding capacity is lowered in a truncated Uup protein lacking its C-terminal domain (CTD), suggesting a contribution of CTD to DNA binding. In the present study, we characterize the role of CTD in the function of Uup, on its overall stability and in DNA binding. To this end, we expressed and purified isolated CTD and we investigated the structural and functional role of this domain. The results underline that CTD is essential for the function of Uup, is stable and able to fold up autonomously. We compared the DNA binding activities of three versions of the protein (Uup, UupΔCTD and CTD) by an electrophoretic mobility shift assay. CTD is able to bind DNA although less efficiently than intact Uup and UupΔCTD. These observations suggest that CTD is an essential domain that contributes directly to the DNA binding ability of Uup.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号