首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   18篇
  2023年   1篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2016年   4篇
  2015年   4篇
  2014年   4篇
  2013年   6篇
  2012年   5篇
  2011年   5篇
  2010年   5篇
  2008年   3篇
  2007年   5篇
  2006年   3篇
  2005年   1篇
  2004年   5篇
  2003年   2篇
  2002年   3篇
  2001年   5篇
  2000年   5篇
  1999年   4篇
  1998年   6篇
  1997年   4篇
  1994年   2篇
  1993年   2篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
排序方式: 共有111条查询结果,搜索用时 859 毫秒
31.
32.
33.
Despite growing interest in conservation physiology, practical examples of how physiology has helped to understand or to solve conservation problems remain scarce. Over the past decade, an interdisciplinary research team has used a conservation physiology approach to address topical conservation concerns for Pacific salmon. Here, we review how novel applications of tools such as physiological telemetry, functional genomics and laboratory experiments on cardiorespiratory physiology have shed light on the effect of fisheries capture and release, disease and individual condition, and stock-specific consequences of warming river temperatures, respectively, and discuss how these findings have or have not benefited Pacific salmon management. Overall, physiological tools have provided remarkable insights into the effects of fisheries capture and have helped to enhance techniques for facilitating recovery from fisheries capture. Stock-specific cardiorespiratory thresholds for thermal tolerances have been identified for sockeye salmon and can be used by managers to better predict migration success, representing a rare example that links a physiological scope to fitness in the wild population. Functional genomics approaches have identified physiological signatures predictive of individual migration mortality. Although fisheries managers are primarily concerned with population-level processes, understanding the causes of en route mortality provides a mechanistic explanation and can be used to refine management models. We discuss the challenges that we have overcome, as well as those that we continue to face, in making conservation physiology relevant to managers of Pacific salmon.  相似文献   
34.
The Escherichia coli DEAD-box protein A (DbpA) belongs to the highly conserved superfamily-II of nucleic acid helicases that play key roles in RNA metabolism. A central question regarding helicase activity is whether the process of coupling ATP hydrolysis to nucleic acid unwinding requires an oligomeric form of the enzyme. We have investigated the structural and functional properties of DbpA by multi-angle laser light-scattering, size-exclusion chromatography, analytical ultracentrifugation, chemical cross-linking and hydrodynamic modeling. DbpA is monomeric in solution up to a concentration of 25 microM and over the temperature range of 4 degrees C to 22 degrees C. Binding of neither nucleotide (ATP or ADP) nor peptidyl transferase center (PTC) RNA, the presumed physiological RNA substrate, favor oligomerization. The hydrodynamic parameters were used together with hydrodynamic bead modeling and structural homology in conjunction with ab initio structure prediction methods to define plausible shapes of DbpA. Collectively, the results favor models where DbpA functions as an active monomer that possesses two distinct RNA binding sites, one in the helicase core domain and the other in the carboxyl-terminal domain that recognizes 23S rRNA and interacts specifically with hairpin 92 of the PTC.  相似文献   
35.
36.
EA Ryan  LF Mockros  AM Stern    L Lorand 《Biophysical journal》1999,77(5):2827-2836
We investigated the origins of greater clot rigidity associated with FXIIIa-dependent cross-linking. Fibrin clots were examined in which cross-linking was controlled through the use of two inhibitors: a highly specific active-center-directed synthetic inhibitor of FXIIIa, 1,3-dimethyl-4,5-diphenyl-2[2(oxopropyl)thio]imidazolium trifluoromethylsulfonate, and a patient-derived immunoglobulin directed mainly against the thrombin-activated catalytic A subunits of thrombin-activated FXIII. Cross-linked fibrin chains were identified and quantified by one- and two-dimensional gel electrophoresis and immunostaining with antibodies specific for the alpha- and gamma-chains of fibrin. Gamma-dimers, gamma-multimers, alpha(n)-polymers, and alpha(p)gamma(q)-hybrids were detected. The synthetic inhibitor was highly effective in preventing the production of all cross-linked species. In contrast, the autoimmune antibody of the patient caused primarily an inhibition of alpha-chain cross-linking. Clot rigidities (storage moduli, G') were measured with a cone and plate rheometer and correlated with the distributions of the various cross-linked species found in the clots. Our findings indicate that the FXIIIa-induced dimeric cross-linking of gamma-chains by itself is not sufficient to stiffen the fibrin networks. Instead, the augmentation of clot rigidity was more strongly correlated with the formation of gamma-multimers, alpha(n)-polymers, and alpha(p)gamma(q)-hybrid cross-links. A mechanism is proposed to explain how these cross-linked species may enhance clot rigidity.  相似文献   
37.
The phylogenetic potential of entire 26S rDNA sequences in plants   总被引:6,自引:1,他引:5  
18S ribosomal RNA genes are the most widely used nuclear sequences for phylogeny reconstruction at higher taxonomic levels in plants. However, due to a conservative rate of evolution, 18S rDNA alone sometimes provides too few phylogenetically informative characters to resolve relationships adequately. Previous studies using partial sequences have suggested the potential of 26S or large-subunit (LSU) rDNA for phylogeny retrieval at taxonomic levels comparable to those investigated with 18S rDNA. Here we explore the patterns of molecular evolution of entire 26S rDNA sequences and their impact on phylogeny retrieval. We present a protocol for PCR amplification and sequencing of entire (approximately 3.4 kb) 26S rDNA sequences as single amplicons, as well as primers that can be used for amplification and sequencing. These primers proved useful in angiosperms and Gnetales and likely have broader applicability. With these protocols and primers, entire 26S rDNA sequences were generated for a diverse array of 15 seed plants, including basal eudicots, monocots, and higher eudicots, plus two representatives of Gnetales. Comparisons of sequence dissimilarity indicate that expansion segments (or divergence domains) evolve 6.4 to 10.2 times as fast as conserved core regions of 26S rDNA sequences in plants. Additional comparisons indicate that 26S rDNA evolves 1.6 to 2.2 times as fast as and provides 3.3 times as many phylogenetically informative characters as 18S rDNA; compared to the chloroplast gene rbcL, 26S rDNA evolves at 0.44 to 1.0 times its rate and provides 2.0 times as many phylogenetically informative characters. Expansion segment sequences analyzed here evolve 1.2 to 3.0 times faster than rbcL, providing 1.5 times the number of informative characters. Plant expansion segments have a pattern of evolution distinct from that found in animals, exhibiting less cryptic sequence simplicity, a lower frequency of insertion and deletion, and greater phylogenetic potential.   相似文献   
38.
Synemin, a high-molecular-weight protein associated with intermediate filaments in muscle, and vimentin, an intermediate-filament subunit found in many different cell types, have been identified by immunologic and electrophoretic criteria as components of intermediate filaments in mature avian erythrocytes. Desmin, the predominant subunit of intermediate filaments in muscle, has not been detected in these cells. Two dimensional immunoautoradiography of proteolytic fragments of synemin and vimentin demonstates that the erythrocyte proteins are highly homologous, if not identical, to their muscle counterparts. Double immunoflurorescence reaveals that erythrocyte synemin and vimentin co-localize in a cytoplasmic network of sinuous filaments that extends from the nucleus to the plasma membrane and resists aggregation by colcemid. Erythrocytes that are attached to glass cover slips can be sonicated to remove nuclei and nonadherent regions of the plasma membrane; this leaves elliptical patches of adherent membrane that retain mats of vimentin- and synemin-containing intermediate filaments, as seen by immunofluorescence and rotary shadowing. Similarly, mechanical enucleation of erythrocyte ghosts in suspension allows isolation of plasma membranes that retain a significant fraction of the synemin and vimentin, as assayed by electrophoresis, and intermediate filaments, as seen in thin sections. Both synemin and vimentin remain insoluble along with spectrin and actin, in solutions containing nonionic detergent and high salt. However, brief exposure of isolated membrane to distilled water releases the synemin and vimentin together in nearly pure form, before the release of significant amounts of spectrin and actin. These data suggest that avian erythrocyte intermeditate filaments are somehow anchored to the plasma membrane; erythrocytes may thus provide a simple system for the study of intermediate filaments and their mode of interaction with membranes. In addition, these data, in conjunction with previous data from muscle, indicate that synemin is capable of associating with either desmin or vimentin and may thus perform a special role in the structure or function of intermediate filaments in erythrocytes as well as muscle.  相似文献   
39.
The proliferation and differentiation of hemopoietic committed progenitor cells depend on colony stimulating factors (CSF). However, isolated mouse granulocyte-macrophage progenitor cells can still undergo limited proliferation in serum-free cultures after CSF deprivation. To test whether this is due to an accumulated pool of internalized factor, we examined the binding, internalization and degradation of radiolabelled interleukin 3 (IL-3) and granulocyte-macrophage colony stimulating factor (GM-CSF) in various hemopoietic cells. We found 20,000 high affinity IL-3 receptors on cells of two IL-3-dependent hemopoietic cell lines, FDC-P1 and FDC-P2 (Kd = 85 and 129 pM). FDC-P1 cells, which also respond to GM-CSF, possess 600 high-affinity GM-CSF receptors (Kd = 64 pM). Cells of both lines internalize IL-3, but only FDC-P1 cells release degraded IL-3 at a rapid rate. Both cell lines have similar dose-response curves for IL-3 and survival kinetics after factor removal. All other cells tested behave like FDC-P1, suggesting that the metabolism of IL-3 by FDC-P2 is exceptional. Our study indicates that transient proliferation of committed progenitor cells in the absence of added factors is apparently not due to a stable pool of internalized CSF but merely represents an intrinsic capability of these cells.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号