The elaboration of interleukin 1 (IL 1) by mononuclear phagocytes is important in the regulation of human inflammatory and fibrotic reactions. Mononuclear phagocytes are morphologically and functionally heterogeneous cells. To further understand the processes controlling inflammation and fibrosis, in particular that in the human lung, we studied the elaboration of IL 1 by unfractionated and density-fractionated human alveolar macrophages and blood monocytes. Stimulated blood monocytes elaborated more IL 1 than stimulated alveolar macrophages. In addition, denser alveolar macrophages and blood monocytes elaborated more IL 1 than less dense alveolar macrophages and monocytes. Lastly, as monocytes matured in vitro, they lost their ability to elaborate IL 1 and became less dense. Thus, there is variability between and within mononuclear phagocyte cell populations in their ability to elaborate IL 1. These differences may result in part from differences in cell maturation. 相似文献
Macrophage migration inhibitory factor (MIF) is an immunoregulatory protein that is a potential therapeutic target for a number of inflammatory diseases. Evidence exists that an unexpected catalytic active site of MIF may have a biological function. To gain further insight into the role of the catalytic active site, a series of mutational, structural, and biological activity studies were performed. The insertion of an alanine between Pro-1 and Met-2 (PAM) abolishes a non-physiological catalytic activity, and this mutant is defective in the in vitro glucocorticoid counter-regulatory activity of MIF. The crystal structure of MIF complexed to (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1), an inhibitor of MIF d-dopachrome tautomerase activity, reveals that ISO-1 binds to the same position of the active site as p-hydroxyphenylpyruvic acid, a substrate of MIF. ISO-1 inhibits several MIF biological activities, further establishing a role for the catalytic active site of MIF. 相似文献
Decay accelerating factor (DAF), a key complement activation control protein, is a 70 kDa membrane bound glycoprotein which controls extent of formation of the C3 and C5 convertases by accelerating their decay. Using clustered regularly-interspaced short palindromic repeats, (CRISPR)/associated protein 9 (Cas9) genome editing we generated a novel DAF deficient (Daf?/?) rat model. The present study describes the renal and extrarenal phenotype of this model and assesses renal response to complement-dependent injury induced by administration of a complement-fixing antibody (anti-Fx1A) against the glomerular epithelial cell (podocyte). Rats generated were healthy, viable and able to reproduce normally. Complete absence of DAF was documented in renal as well as extra-renal tissues at both protein and mRNA level compared to Daf+/+ rats. Renal histology in Daf?/? rats showed no differences regarding glomerular or tubulointerstitial pathology compared to Daf+/+ rats. Moreover, there was no difference in urine protein excretion (ratio of urine albumin to creatinine) or in serum creatinine and urea levels. In Daf?/? rats, proteinuria was significantly increased following binding of anti-Fx1A antibody to podocytes while increased C3b deposition was observed. The DAF knock-out rat model developed validates the role of this complement cascade regulator in immune-mediated podocyte injury. Given the increasing role of dysregulated complement activation in various forms of kidney disease and the fact that the rat is the preferred animal for renal pathophysiology studies, the rat DAF deficient model may serve as a useful tool to study the role of this complement activation regulator in complement-dependent forms of kidney injury.
Many farmer-popular indica rice (Oryza sativa L.) cultivars are recalcitrant to Agrobacterium-mediated transformation through tissue culture and regeneration. In planta transformation using Agrobacterium could therefore be a useful alternative for indica rice. A simple and reproducible in planta protocol with higher transformation efficiencies than earlier reports was established for a recalcitrant indica rice genotype. Agrobacterium tumefaciens containing the salt tolerance-enhancing Pea DNA Helicase45 (PDH45) gene, with the reporter and selectable marker genes, gus-INT (β-glucuronidase with intron) and hygromycin phosphotransferase (hpt), respectively, were used. Overnight-soaked mature embryos were infected and allowed to germinate, flower, and set T1 seeds. T0 plants were considered positive for the transgene if the spikelets of one or more of their panicles were positive for gus. Thereafter, selection at T1 was done by germination in hygromycin and transgenic status re-confirmation by subjecting plantlet DNA/RNA to gene-specific PCR, Southern and semi-quantitative RT-PCR. Additionally, physiological screening under saline stress was done at the T2 generation. Transformation efficiency was found to be 30–32% at the T0 generation. Two lines of the in planta transformed seedlings of the recalcitrant rice genotype were shown to be saline tolerant having lower electrolyte leakage, lower Na+/K+, minimal leaf damage, and higher chlorophyll content under stress, compared to the WT at the T2 generation. 相似文献
Although low socioeconomic status, and environmental factors are known risk factors for rheumatic heart disease in other societies, risk factors for rheumatic heart disease remain less well described in Uganda.
Aims and Objective
The objective of this study was to investigate the role of socio-economic and environmental factors in the pathogenesis of rheumatic heart disease in Ugandan patients.
Methods
This was a case control study in which rheumatic heart disease cases and normal controls aged 5–60 years were recruited and investigated for socioeconomic and environmental risk factors such as income status, employment status, distance from the nearest health centre, number of people per house and space area per person.
Results
486 participants (243 cases and 243 controls) took part in the study. Average age was 32.37+/−14.6 years for cases and 35.75+/−12.6 years for controls. At univariate level, Cases tended to be more overcrowded than controls; 8.0+/−3.0 versus 6.0+/−3.0 persons per house. Controls were better spaced at 25.2 square feet versus 16.9 for cases. More controls than cases were employed; 45.3% versus 21.1%. Controls lived closer to health centers than the cases; 4.8+/−3.8 versus 3.3+/−12.9 kilometers. At multivariate level, the odds of rheumatic heart disease was 1.7 times higher for unemployment status (OR = 1.7, 95% CI = 1.05–8.19) and 1.3 times higher for overcrowding (OR = 1.35, 95% CI = 1.1–1.56). There was interaction between overcrowding and longer distance from the nearest health centre (OR = 1.20, 95% CI = 1.05–1.42).
Conclusion
The major findings of this study were that there was a trend towards increased risk of rheumatic heart disease in association with overcrowding and unemployment. There was interaction between overcrowding and distance from the nearest health center, suggesting that the effect of overcrowding on the risk of acquiring rheumatic heart disease increases with every kilometer increase from the nearest health center. 相似文献
Obstructive sleep apnea (OSA) is a common disorder affecting 15–24% of the adults and is associated with increased risk of hypertension and atherosclerosis. The exact mechanisms underlying hypertension in OSA are not entirely clear. YKL-40/Chitinase-3-like protein-1 is a circulating moiety with roles in injury, repair and angiogenesis that is dysregulated in atherosclerosis and a number of other diseases. We sought to determine the role of YKL-40 in endothelial dysfunction and hypertension in OSA.
Methods
We studies 23 normotensive OSA (N-OSA) and 14 hypertensive OSA (H-OSA) without diabetes and apparent cardiovascular disease. Endothelial-dependent nitric oxide-mediated vasodilatory capacity was assessed by flow-mediated vasodilation (FMD). YKL-40, vascular endothelial growth factor (VEGF) and the soluble form of VEGF receptor-1or sFlt-1 were measured in plasma using ELISA methodology.
Results
N-OSA subjects aged 49.1±2.3 years and H-OSA aged 51.3±1.9 years with BMI 36.1±1.6 and 37.6±1.9 kg/m2, respectively. The apnea-hypopnea index (AHI) was 41±5 events/hr in N-OSA and 46±6 in H-OSA with comparable degree of oxygen desaturations during sleep. FMD was markedly impaired in H-OSA (8.3%±0.8) compared to N-OSA (13.2%±0.6, P<0.0001). Plasma YKL-40 was significantly elevated in H-OSA (55.2±7.9 ng/ml vs. 35.6±4.2 ng/ml in N-OSA, P = 0.02) and had an inverse relationship with FMD (r = −0.52, P = 0.013). There was a significant positive correlation between sFlt-1/VEGF, a measure of decreased VEGF availability, and YKL-40 (r = 0.42, P = 0.04).
Conclusion
The levels of plasma YKL-40 were elevated in H-OSA group and inversely correlated with the endothelial-dependent vasodilatory capacity whereas there was a positive correlation between sFlt-1/VEGF and YKL-40. These findings suggest that YKL-40 is dysregulated, in part, due to perturbation of VEGF signaling, and may contribute to endothelial dysfunction and hypertension in OSA. 相似文献
Major pathogenic clonal complexes (cc) of Neisseria meningitidis differ substantially in their point prevalence among healthy carriers. We show that frequently carried pathogenic cc (e.g. sequence type ST‐41/44 cc and ST‐32 cc) depend on extracellular DNA (eDNA) to initiate in vitro biofilm formation, whereas biofilm formation of cc with low point prevalence (ST‐8 cc and ST‐11 cc) was eDNA‐independent. For initial biofilm formation, a ST‐32 cc type strain, but not a ST‐11 type strain, utilized eDNA. The release of eDNA was mediated by lytic transglycosylase and cytoplasmic N‐acetylmuramyl‐l ‐alanine amidase genes. In late biofilms, outer membrane phospholipase A‐dependent autolysis, which was observed in most cc, but not in ST‐8 and ST‐11 strains, was required for shear force resistance of microcolonies. Taken together, N. meningitidis evolved two different biofilm formation strategies, an eDNA‐dependent one yielding shear force resistant microcolonies, and an eDNA‐independent one. Based on the experimental findings and previous epidemiological observations, we hypothesize that most meningococcal cc display a settler phenotype, which is eDNA‐dependent and results in a stable interaction with the host. On the contrary, spreaders (ST‐11 and ST‐8 cc) are unable to use eDNA for biofilm formation and might compensate for poor colonization properties by high transmission rates. 相似文献
High-throughput analyses that are central to microbial systems biology and ecophysiology research benefit from highly homogeneous
and physiologically well-defined cell cultures. While attention has focused on the technical variation associated with high-throughput
technologies, biological variation introduced as a function of cell cultivation methods has been largely overlooked. This
study evaluated the impact of cultivation methods, controlled batch or continuous culture in bioreactors versus shake flasks,
on the reproducibility of global proteome measurements in Shewanellaoneidensis MR-1. Variability in dissolved oxygen concentration and consumption rate, metabolite profiles, and proteome was greater in
shake flask than controlled batch or chemostat cultures. Proteins indicative of suboxic and anaerobic growth (e.g., fumarate
reductase and decaheme c-type cytochromes) were more abundant in cells from shake flasks compared to bioreactor cultures, a finding consistent with
data demonstrating that “aerobic” flask cultures were O2 deficient due to poor mass transfer kinetics. The work described herein establishes the necessity of controlled cultivation
for ensuring highly reproducible and homogenous microbial cultures. By decreasing cell to cell variability, higher quality
samples will allow for the interpretive accuracy necessary for drawing conclusions relevant to microbial systems biology research. 相似文献
We have used docking techniques in order to propose potential inhibitors to the enzymes adenosine phosphosulfate reductase and adenosine triphosphate sulfurylase that are responsible, among other deleterious effects, for causing souring of oil and gas reservoirs. Three candidates selected through molecular docking revealed new and improved polar and hydrophobic interactions with the above-mentioned enzymes. Microbiological laboratory assays performed subsequently corroborated the results of computer modelling that the three compounds can efficiently control the biogenic sulfide production. 相似文献