首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   739篇
  免费   30篇
  769篇
  2023年   2篇
  2022年   6篇
  2021年   15篇
  2020年   11篇
  2019年   12篇
  2018年   14篇
  2017年   10篇
  2016年   12篇
  2015年   42篇
  2014年   39篇
  2013年   44篇
  2012年   61篇
  2011年   51篇
  2010年   30篇
  2009年   32篇
  2008年   45篇
  2007年   43篇
  2006年   37篇
  2005年   36篇
  2004年   40篇
  2003年   26篇
  2002年   35篇
  2001年   7篇
  1999年   7篇
  1998年   7篇
  1997年   11篇
  1996年   9篇
  1995年   3篇
  1994年   6篇
  1993年   10篇
  1992年   6篇
  1991年   2篇
  1990年   6篇
  1989年   2篇
  1988年   5篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   7篇
  1982年   3篇
  1981年   4篇
  1980年   5篇
  1979年   2篇
  1977年   2篇
  1974年   2篇
  1973年   3篇
  1969年   2篇
  1967年   1篇
  1965年   1篇
  1964年   1篇
排序方式: 共有769条查询结果,搜索用时 15 毫秒
11.
A large remaining of dry deciduous forest (woody Caatinga) in semi-arid Brazil has been reached by successive fires and exploratory actions what leads to the invasion of low load trees and shrub mesh, called “Carrasco vegetation”. As it restrains the sprouting of woody species, land recuperation was performed using a mixed plantation of native and Eucalyptus species to both preservation and to supply the demand for wood. In order to evaluate the recuperation, a study of microbial communities was proposed. In addition to the highest soil phosphorus content found in the Carrasco area, the greatest spore density of arbuscular mycorrhizal fungi (AMF) communities occurred in the rhizosphere of the both pioneer species: Carrasco and Eucalyptus. In contrast to the DGGE bacteria profile, it was possible to group AMF species of the preserved and experimental sites which were not clustered with Carrasco species through the DGGE of Glomales DNA and also by the principal component analysis (PCA) based on diversity index. Glomus and Acaulospora were the dominant genera at both the preserved site and Carrasco. Nevertheless, Gigaspora species were preferentially found in Dry Forest, while Scutellospora were absent. In contrast, Carrasco favoured the genus Scutellospora and the species Acaulospora scrobiculata. Our results allow one to conclude that vegetation type modifies the AMF communities, which may be used as good indicator of soil quality. Based on AMF communities as soil quality indicator, the mixed forest plantation appears to be underway towards the preserved site two years after transplantation.  相似文献   
12.
Liming of acidic soils can prevent aluminum toxicity and improve crop production. Some maize lines show aluminum (Al) tolerance, and exudation of organic acids by roots has been considered to represent an important mechanism involved in the tolerance. However, there is no information about the impact of liming on the structures of bacterial and fungal communities in Cerrado soil, nor if there are differences between the microbial communities from the rhizospheres of Al-tolerant and Al-sensitive maize lines. This study evaluated the effects of liming on the structure of bacterial and fungal communities in bulk soil and rhizospheres of Al-sensitive and Al-tolerant maize (Zea mays L.) lines cultivated in Cerrado soil by PCR-DGGE, 30 and 90 days after sowing. Bacterial fingerprints revealed that the bacterial communities from rhizospheres were more affected by aluminum stress in soil than by the maize line (Al-sensitive or Al-tolerant). Differences in bacterial communities were also observed over time (30 and 90 days after sowing), and these occurred mainly in the Actinobacteria. Conversely, fungal communities from the rhizosphere were weakly affected either by liming or by the rhizosphere, as observed from the DGGE profiles. Furthermore, only a few differences were observed in the DGGE profiles of the fungal populations during plant development when compared with bacterial communities. Cloning and sequencing of 16S rRNA gene fragments obtained from dominant DGGE bands detected in the bacterial profiles of the Cerrado bulk soil revealed that Actinomycetales and Rhizobiales were among the dominant ribotypes.  相似文献   
13.

Background

Misclassification of patients as low cardiovascular risk (LCR) remains a major concern and challenges the efficacy of traditional risk markers. Due to its strong association with cholesterol acceptor capacity, high-density lipoprotein (HDL) size has been appointed as a potential risk marker. Hence, we investigate whether HDL size improves the predictive value of HDL-cholesterol in the identification of carotid atherosclerotic burden in individuals stratified to be at LCR.

Methods and Findings

284 individuals (40–75 years) classified as LCR by the current US guidelines were selected in a three-step procedure from primary care centers of the cities of Campinas and Americana, SP, Brazil. Apolipoprotein B-containing lipoproteins were precipitated by polyethylene glycol and HDL size was measured by dynamic light scattering (DLS) technique. Participants were classified in tertiles of HDL size (<7.57; 7.57–8.22; >8.22 nm). Carotid intima-media thickness (cIMT) <0.90 mm (80th percentile) was determined by high resolution ultrasonography and multivariate ordinal regression models were used to assess the association between cIMT across HDL size and levels of lipid parameters. HDL-cholesterol was not associated with cIMT. In contrast, HDL size >8.22 nm was independently associated with low cIMT in either unadjusted and adjusted models for age, gender and Homeostasis Model Assessment 2 index for insulin sensitivity, ethnicity and body mass index (Odds ratio 0.23; 95% confidence interval 0.07–0.74, p = 0.013).

Conclusion

The mean HDL size estimated with DLS constitutes a better predictor for subclinical carotid atherosclerosis than the conventional measurements of plasma HDL-cholesterol in individuals classified as LCR.  相似文献   
14.
Snake venom lectins have been studied in regard to their chemical structure and biological functions. However, little is known about lectins isolated from Bothrops atrox snake venom. We report here the isolation and partial functional and biochemical characterization of an acidic glycan-binding protein called galatrox from this venom. This lectin was purified by affinity chromatography using a lactosyl-sepharose column, and its homogeneity and molecular mass were evaluated by high-performance liquid chromatography, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. The purified galatrox was homogeneous and characterized as an acidic protein (pI 5.2) with a monomeric and dimeric molecular mass of 16.2 and 32.5 kDa, respectively. Alignment of N-terminal and internal amino acid sequences of galatrox indicated that this protein exhibits high homology to other C-type snake venom lectins. Galatrox showed optimal hemagglutinating activity at a concentration of 100 μg/ml and this effect was drastically inhibited by lactose, ethylenediaminetetraacetic acid, and heating, which confirmed galatrox's lectin activity. While galatrox failed to induce the same level of paw edema or mast cell degranulation as B. atrox crude venom, galatrox did alter cellular viability, which suggested that galatrox might contribute to venom toxicity by directly inducing cell death.  相似文献   
15.
In order to study the effect of phenol moieties on biological activities of ascorbic acid derivatives, we synthesized 13 novel 4,5-diaryl-3-hydroxy-2(5H)-furanones 5a-m with various substitution patterns. Compound 5 g bearing a 2,3-dihydroxy phenyl ring on the 5-position of the heterocycle appeared to be the most powerful anti-oxidant furanone with reducing activity against DPPH (IC(50)=10.3 microM), superoxide anion quenching capacity (IC(50)=0.187 mM) and lipid peroxidation inhibitory effect (IC(50)=0.129 mM). To ascertain determinant molecular features for anti-oxidant activities, structure-activity relationships were studied. Lipophilicity and molecular parameters related to electron distribution and structure (difference in heats of formation between the compound and its radical or its cation radical, energy of the highest occupied molecular orbital, HOMO) were found to correlate with the anti-oxidant action of compounds 5 in the different tests used. Oxygen-derived free radicals are known to contribute to inflammatory disorders; therefore we have investigated effects of compounds 5 in two models of inflammation: phorbol ester-induced ear edema in mice (TPA-test) and carrageenan-induced paw edema in rat. At 100 mg/kg ip in the TPA-test, the anti-inflammatory activity of compounds 5 was potent compared with that of indomethacin and ketorolac and all the results suggested a cyclooxygenase inhibition in the emergence of such properties. The combined pharmacological actions of compounds 5 associated with a favorable therapeutic index prompt with interesting perspectives for their use in heart and brain disorders as well as in inflammatory diseases.  相似文献   
16.
Almost half of Mexican territory has been classified as environmentally degraded. The main response for the last 60 years has been reforestation to combat soil erosion and loss of forest cover, mostly carried out on private lands where negotiations with local stakeholders were critical. Despite four legal instruments referring to ecological restoration, no specific instrument that defines basic concepts, criteria and standards, required actions, or regulations to implement and evaluate ecological restoration exists. The Ministry of the Environment and Natural Resources is now solely in charge of restoration and only recently have external scientists been invited to be part of the process. Following important national and international events in Latin America and the Caribbean region, the First Mexican Symposium on Ecological Restoration was held in November, 2014. This historic event was the first action undertaken in Mexico to meet Objective 3 of the Global Strategy of Plant Conservation, coordinated in Mexico by the National Council for the Use and Knowledge of Biodiversity. Although mangrove ecosystems are the most endangered ecosystem type in Mexico, they were not well represented at the symposium. In contrast, several other ecosystem types, such as tropical dry forest and islands, have received increased attention. Overall, while the Symposium and above‐cited policy initiatives are important steps, Mexico needs to increase its institutional capacities and social organization of the rural sector with regard to ecological restoration. Better integration of social and natural scientists and increased participation of Mexico internationally is also needed.  相似文献   
17.
Although plant cell walls may be degraded by microbial free enzymes, many bacteria degrade cellulose via enzyme complexes called cellulosomes. The study of the structures and mechanisms of these large macromolecular complexes is an active and ongoing research topic, with the goal of developing methods to improve lignocellulosic biomass conversion using cellulosomes. The aim of the present work was to evaluate and characterize the holocellulolytic activities produced by two new isolates (ISO1 and ISO2) of the spore-forming thermophilic anaerobic bacterium Clostridium thermocellum, during growth on crystalline cellulose and sugarcane bagasse, in comparison with activities obtained from the C. thermocellum strain CthJW. The pH and temperature values for optimal growth of the isolates were pH 7 and 60 °C, respectively. The isolates produced cellulolytic, xylanolytic, and pectinolytic activities when cultured on crystalline cellulose or sugarcane bagasse, which have never been used previously as the sole carbon source for these bacteria. The profiles of secreted proteins for these isolates, ISO1 and ISO2, were quite different from those obtained for the standard strain CthJW and from each other, as shown by 2D gel electrophoresis maps, and these profiles also depend on the carbon source used. Different protein isoforms were also detected in the maps for all growth conditions and bacterial strains. MALDI-TOF mass spectrometry was used to identify the differentially expressed proteins for ISO1 and ISO2 under growth in the presence of cellulose as carbon source. Twenty-five differentially expressed spots were identified and grouped into 8 functional categories: metabolism (20 %), motor function (20 %), protein synthesis (12 %), oxidative stress (16 %), secretory pathway (12 %), cellulose hydrolysis (4 %), protein folding (4 %), and defense (12 %). Spots 200 and 197, identified as a glycosyl hydrolase family member 9 and as a chaperone GroEL, respectively, were detected for all isolates and are potentially related to cellulosome architecture.  相似文献   
18.
Kinesin spindle protein (KSP), an ATP‐dependent motor protein, plays an essential role in bipolar spindle formation during the mitotic phase (M phase) of the normal cell cycle. KSP has emerged as a novel target for antimitotic anticancer drug development. In this work, we synthesized a range of new biphenyl compounds and investigated their properties in vitro as potential antimitotic agents targeting KSP expression. Antiproliferation (MTT (=3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl‐2H‐tetrazolium bromide)) assays, combined with fluorescence‐assisted cell sorting (FACS) and Western blot studies analyzing cell‐cycle arrest confirmed the mechanism and potency of these biphenyl compounds in a range of human cancer cell lines. Structural variants revealed that functionalization of biphenyl compounds with bulky aliphatic or aromatic groups led to a loss of activity. However, replacement of the urea group with a thiourea led to an increase in antiproliferative activity in selected cell lines. Further studies using confocal fluorescence microscopy confirmed that the most potent biphenyl derivative identified thus far, compound 7 , exerts its pharmacologic effect specifically in the M phase and induces monoaster formation. These studies confirm that chemical scope remains for improving the potency and treatment efficacy of antimitotic KSP inhibition in this class of biphenyl compounds.  相似文献   
19.

Background

New therapeutic targets for cardiac hypertrophy, an independent risk factor for heart failure and death, are essential. HNO is a novel redox sibling of NO• attracting considerable attention for the treatment of cardiovascular disorders, eliciting cGMP-dependent vasodilatation yet cGMP-independent positive inotropy. The impact of HNO on cardiac hypertrophy (which is negatively regulated by cGMP) however has not been investigated.

Methods

Neonatal rat cardiomyocytes were incubated with angiotensin II (Ang II) in the presence and absence of the HNO donor Angeli''s salt (sodium trioxodinitrate) or B-type natriuretic peptide, BNP (all 1 µmol/L). Hypertrophic responses and its triggers, as well as cGMP signaling, were determined.

Results

We now demonstrate that Angeli''s salt inhibits Ang II-induced hypertrophic responses in cardiomyocytes, including increases in cardiomyocyte size, de novo protein synthesis and β-myosin heavy chain expression. Angeli''s salt also suppresses Ang II induction of key triggers of the cardiomyocyte hypertrophic response, including NADPH oxidase (on both Nox2 expression and superoxide generation), as well as p38 mitogen-activated protein kinase (p38MAPK). The antihypertrophic, superoxide-suppressing and cGMP-elevating effects of Angeli''s salt were mimicked by BNP. We also demonstrate that the effects of Angeli''s salt are specifically mediated by HNO (with no role for NO• or nitrite), with subsequent activation of cardiomyocyte soluble guanylyl cyclase (sGC) and cGMP signaling (on both cGMP-dependent protein kinase, cGK-I and phosphorylation of vasodilator-stimulated phosphoprotein, VASP).

Conclusions

Our results demonstrate that HNO prevents cardiomyocyte hypertrophy, and that cGMP-dependent NADPH oxidase suppression contributes to these antihypertrophic actions. HNO donors may thus represent innovative pharmacotherapy for cardiac hypertrophy.  相似文献   
20.
Nabedryk E  Paddock ML  Okamura MY  Breton J 《Biochemistry》2005,44(44):14519-14527
In the photosynthetic reaction center (RC) from the purple bacterium Rhodobacter sphaeroides, proton-coupled electron-transfer reactions occur at the secondary quinone (Q(B)) site. Several nearby residues are important for both binding and redox chemistry involved in the light-induced conversion from Q(B) to quinol Q(B)H(2). Ser-L223 is one of the functionally important residues located near Q(B). To obtain information on the interaction between Ser-L223 and Q(B) and Q(B)(-), isotope-edited Q(B)(-)/Q(B) FTIR difference spectra were measured in a mutant RC in which Ser-L223 is replaced with Ala and compared to the native RC. The isotope-edited IR fingerprint spectra for the C=O [see text] and C=C [see text] modes of Q(B) (Q(B)(-)) in the mutant are essentially the same as those of the native RC. These findings indicate that highly equivalent interactions of Q(B) and Q(B)(-) with the protein occur in both native and mutant RCs. The simplest explanation of these results is that Ser-L223 is not hydrogen bonded to Q(B) or Q(B)(-) but presumably forms a hydrogen bond to a nearby acid group, preferentially Asp-L213. The rotation of the Ser OH proton from Asp-L213 to Q(B)(-) is expected to be an important step in the proton transfer to the reduced quinone. In addition, the reduced quinone remains firmly bound, indicating that other distinct hydrogen bonds are more important for stabilizing Q(B)(-). Implications on the design features of the Q(B) binding site are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号