首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1083篇
  免费   111篇
  国内免费   1篇
  1195篇
  2023年   8篇
  2022年   12篇
  2021年   24篇
  2020年   20篇
  2019年   28篇
  2018年   33篇
  2017年   29篇
  2016年   42篇
  2015年   73篇
  2014年   67篇
  2013年   60篇
  2012年   73篇
  2011年   89篇
  2010年   39篇
  2009年   39篇
  2008年   62篇
  2007年   46篇
  2006年   63篇
  2005年   53篇
  2004年   46篇
  2003年   38篇
  2002年   32篇
  2001年   6篇
  2000年   8篇
  1999年   13篇
  1998年   8篇
  1997年   8篇
  1995年   6篇
  1994年   9篇
  1992年   8篇
  1991年   8篇
  1990年   5篇
  1989年   9篇
  1988年   6篇
  1987年   6篇
  1986年   4篇
  1985年   6篇
  1984年   4篇
  1983年   7篇
  1982年   11篇
  1981年   5篇
  1980年   8篇
  1979年   7篇
  1978年   7篇
  1976年   5篇
  1975年   7篇
  1974年   4篇
  1973年   7篇
  1972年   5篇
  1969年   4篇
排序方式: 共有1195条查询结果,搜索用时 15 毫秒
61.
62.
In the present work, we optimised and evaluated a qPCR system integrating 6-FAM (6-carboxyfluorescein)-labelled TaqMan probes and melting analysis using the SYTO 82 (S82) DNA binding dye in a single reaction. We investigated the influence of the S82 on various TaqMan and melting analysis parameters and defined its optimal concentration. In the next step, the method was evaluated in 36 different TaqMan assays with a total of 729 paired reactions using various DNA and RNA templates, including field specimens. In addition, the melting profiles of interest were correlated with the electrophoretic patterns. We proved that the S82 is fully compatible with the FAM-TaqMan system. Further, the advantages of this approach in routine diagnostic TaqMan qPCR were illustrated with practical examples. These included solving problems with flat or other atypical amplification curves or even false negativity as a result of probe binding failure. Our data clearly show that the integration of the TaqMan qPCR and melting analysis into a single assay provides an additional control option as well as the opportunity to perform more complex analyses, get more data from the reactions, and obtain analysis results with higher confidence.  相似文献   
63.
All living organisms contain a unique class of molecular chaperones called 60?kDa heat shock proteins (HSP60 – also known as GroEL in bacteria). While some organisms contain more than one HSP60 or GroEL isoform, at least one isoform has always proven to be essential. Because of this, we have been investigating targeting HSP60 and GroEL chaperonin systems as an antibiotic strategy. Our initial studies focused on applying this antibiotic strategy for treating African sleeping sickness (caused by Trypanosoma brucei parasites) and drug-resistant bacterial infections (in particular Methicillin-resistant Staphylococcus aureus – MRSA). Intriguingly, during our studies we found that three known antibiotics – suramin, closantel, and rafoxanide – were potent inhibitors of bacterial GroEL and human HSP60 chaperonin systems. These findings prompted us to explore what other approved drugs, natural products, and known bioactive molecules might also inhibit HSP60 and GroEL chaperonin systems. Initial high-throughput screening of 3680 approved drugs, natural products, and known bioactives identified 161 hit inhibitors of the Escherichia coli GroEL chaperonin system (4.3% hit rate). From a purchased subset of 60 hits, 29 compounds (48%) re-confirmed as selective GroEL inhibitors in our assays, all of which were nearly equipotent against human HSP60. These findings illuminate the notion that targeting chaperonin systems might be a more common occurrence than we previously appreciated. Future studies are needed to determine if the in vivo modes of action of these approved drugs, natural products, and known bioactive molecules are related to GroEL and HSP60 inhibition.  相似文献   
64.
65.
Crop rotation systems in organic and conventional farming systems differ in crop types, management and duration. However, changes in arthropod communities over the entire rotation system are poorly understood, as many studies have surveyed only single years or have not covered the entire rotation period. Here, we describe changes in arthropods in two contrasting systems at a split organic‐conventional farm: an 8‐year organically managed rotation with five crops and a 5‐year conventionally managed rotation with three crops. Arthropods were classified into three functional groups, representing epigeal predators, foliar predators/parasitoids and herbivores/pollinators. Epigeal predators were particularly reduced by soil tillage which occurred annually in the conventional rotation, but was intermittent in the organic. Arthropods were most abundant on the conventional rotation, but most taxonomically diverse on the organic. In the conventional system, all functional groups showed a cyclical change in their taxonomic composition that closely matched the crop rotation sequence, whereas in the organic rotation, the cycle was less clear. Whilst the current year's crop type was the major determinant of arthropod community composition, there was a significant “lag effect” for many taxa from the preceding year's crop. Our results suggest that both the amounts of soil tillage (e.g., in no‐till systems) and crop rotation order have major impacts on arthropods in agroecosystems. Rotations with excessive soil tillage are likely to reduce the abundance of some groups of beneficial arthropods, especially epigeal predators.  相似文献   
66.
The vascular system is unique in that extensive branching morphogenesis may take place in the adult. Developmental neovascularization is guided by precise spatial cues but vessel formation in the adult is not genetically programmed. Here, we review different adult modes for branch patterning, acquiring artery or vein identity and allocating vascular progenitor cells. The endothelium shows a remarkable degree of self-organization into a treelike network and hemodynamic forces are important in rectifying abnormal branching. This discussion is in the context of a contemplated therapy for improving organ perfusion by creating new vascular loops properly integrated within the existing network.  相似文献   
67.
68.
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号