首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   416篇
  免费   27篇
  443篇
  2023年   6篇
  2022年   21篇
  2021年   32篇
  2020年   32篇
  2019年   60篇
  2018年   27篇
  2017年   20篇
  2016年   27篇
  2015年   29篇
  2014年   25篇
  2013年   39篇
  2012年   35篇
  2011年   34篇
  2010年   8篇
  2009年   9篇
  2008年   9篇
  2007年   3篇
  2006年   8篇
  2005年   2篇
  2004年   6篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
  1996年   2篇
  1994年   1篇
排序方式: 共有443条查询结果,搜索用时 15 毫秒
91.
92.
Pepino (Solanum muricatum var. pepino) plants were found affected by an extensive leaf spot caused by plant pathogenic fungi during a survey in the Cameron highlands, Pahang state, Malaysia. Symptomatic leaf samples were collected from infected pepino plants and cultivated on PDA medium, and the pathogen was isolated and purified; then, consequently, all isolates were identified as Stemphylium lycopersici on the basis of their cultural and morphological characteristics and combined sequences of the internal transcribed spacer (ITS) and glyceraldehyde‐3‐phosphate dehydrogenase (gpd) regions. A pathogenicity assay on detached leaves further confirmed that S. lycopersici causes leaf spot disease. To the best of our knowledge, this is the first report of S. lycopersici causing leaf spot on pepino in Malaysia and worldwide.  相似文献   
93.
Wnt signaling pathway plays a major role in the regulation of cell proliferation, migration, tissue homeostasis, tumor progression and cancer. This pathway can be antagonized by different proteins such as DKK proteins, which disrupt the initiatory complex (Frizzled–LRP6 complex). Therefore, interruption of its formation could be a promising strategy for the design of Low-density lipoprotein receptor-Related Protein 6 (LRP6) inhibitors. A computational study was conducted in order to assist in the design of inhibitory peptides against LRP6 as co-receptor of frizzled. Twelve fragments as peptide derivatives of natural ligand of LRP6 receptor (DKK1) were designed using the information from the analysis of the DKK1_C/LRP6 complex, hot spot residues and the secondary structure. These fragments were based on cys2 domain of DKK1. The designed peptides were energy minimized by molecular dynamics simulations in the presence and absence of LRP6 receptor and their binding affinities were investigated via molecular docking using ClusPro, HADDOCK and PRODIGY webservers. Finally, the stability and free energy of binding in peptides were calculated by FoldX software. The results showed that four designed peptides had the highest affinity (the interaction energy: ?10.2867, ?10.1388, ?7.94339 and ?7.57536 kcal/mol) to interact with the receptor which showed the most interacting residues and the lowest free energy of binding. Also, the RMSD, RMSF and RoG of the protein–peptide complex exhibited less structural fluctuations which can be linked to the stability of peptides associated to the receptor. These peptides may be considered as candidates for inhibiting Wnt signaling pathway through LRP6 receptor.  相似文献   
94.
Microbiological screening of tissue allografts is crucial to prevent the transmission of bacterial and fungal infections to transplant recipients. Klebsiella was the most prevalent and resistant contaminating microorganism observed in our setting in the Iranian Tissue Bank. This study was conducted to determine the presence of extended-spectrum β-lactamase (ESBL) genes, antimicrobial resistance patterns of Klebsiella pneumoniae isolates, and their clonal relationships in allograft materials. K. pneumoniae contaminating bone and other tissue allografts recovered from deceased donors were identified and ESBL isolates were detected using a phenotypic confirmatory method. Antimicrobial susceptibility testing was carried out using the disk diffusion method. Distribution of ESBL genes and molecular typing were performed using polymerase chain reaction (PCR) and Repetitive-element (rep-PCR) methods. Of 3828 donated tissues, 51 (1.3%) were found contaminated by K. pneumoniae isolates. Compared to tissue allografts from brain-dead, heart-beating tissue donors, allografts from donors with circulatory cessation were associated with a higher risk of K. pneumoniae contamination [odds ratio (OR), 1.2 (CI 95% 0.9–2.3) (P value < 0.001)]. Half of the isolates produced ESBL, and the rate of susceptibility to cephalosporins was 51%. Among isolates, 22 (43.1%) harbored CTX-M, 31 (60.8%) SHV, and 9 (17.6%) harbored TEM types. The rep-dendrogram indicated that clones having identical or related strains with a similar antibiotype were isolated in the same period. This study provides evidence that a single clone of K. pneumoniae contaminated tissue allografts recovered from many different donors. A single clone found on tissues from several donors suggests contamination of tissues from a single source such as the tissue recovery process and environment. Genomic DNA testing and clonality of contaminating bacteria using molecular methods can focus the epidemiologic investigation on the tissue allograft recovery process including a search for contamination of the tissue recovery room environment, recovery staff, recovery equipment, reagents, solutions and supplies.  相似文献   
95.
There are diverse relationships between mites and birds or mammals. These mites may play an important role in epizootics and in the perpetuation of some significant diseases. The purpose of this study is to revise the current knowledge of mesostigmatic mites occurring on birds, including their nests and mammals and their substrates, in Iran and to compare the results with other regions of the Palearctic ecozone. This study presents a revised list of 38 species of mesostigmatic mite occuring on birds (17 species) and mammals (24 species) or in their nests/substrates in Iran. Dermanyssus gallinae, Ornithonyssus sylviarum and Parasitus hyalinus were found on both birds and mammals. The species composition of mites reported in Iran was compared with other regions of the Palearctic ecozone. Parasites, specifically those from genera Dermanyssus, Ornithonyssus and Liponyssoides, may be hazardous to human health. Species from these genera were predominant among the reported mites.  相似文献   
96.
Central regulatory mechanisms for food intake regulation vary among animals. Evidence from animal studies suggests central opioids and dopamine have prominent role on appetite regulation but their interaction(s) have not been studied in layer-type chicken. Thus, in this study six experiments designed to investigate intracerebroventricular (ICV) administration of SCH23390 (D1 like receptors antagonist), Sulpride (D2 like receptors antagonist), DAMGO (μ-opioid receptors agonist), DPDPE (δ-opioid receptors agonist), U-50488H (κ-opioid receptors agonist) on feeding behavior in 3 h food deprived neonatal layer-type chickens. In experiment 1, chicks ICV injected with control solution, SCH23390 (2.5 nmol), DAMGO (125 pmol) and their combination (SCH23390 + DAMGO). In experiment 2: control solution, SCH23390 (2.5 nmol), DPDPE (δ-opioid receptors agonist, 40 pmol) and SCH23390 + DPDPE were applied to the birds. In experiment 3, injections were control solution, SCH23390 (2.5 nmol), U-50488H (30 nmol) and SCH23390 + U-50488H. In experiments 4–6 were similar to experiments 1–3 except Sulpride (2.5 nmol) applied instead of SCH23390. Then, cumulative food intake was recorded until 120 min after injection. According to the results, ICV injection of DAMGO (125 pmol) significantly decreased food intake but co-injection of DAMGO + SCH23390 diminished DAMGO-induced hypophagia (P < 0.05). Also, SCH23390 was not able to decrease the DPDPE- and U-50488H-induced hyperphagia (P > 0.05). Furthermore, Sulpride had no role on DAMGO, DPDPE and U-50488H-induced food intake (P > 0.05). These results suggest there is an interaction between opioidergic and dopaminergic systems via μ and D1 receptors in appetite regulation in chicken.  相似文献   
97.
Impact-related mild traumatic brain injuries (mTBI) are a major public health concern, and remain as one of the most poorly understood injuries in the field of neuroscience. Currently, the diagnosis and management of such injuries are based largely on patient-reported symptoms. An improved understanding of the underlying pathophysiology of mTBI is urgently needed in order to develop better diagnostic and management protocols. Specifically, dynamic post-injury changes to the myelin sheath in the human brain have not been examined, despite ‘compromised white matter integrity’ often being described as a consequence of mTBI. In this preliminary cohort study, myelin water imaging was used to prospectively evaluate changes in myelin water fraction, derived from the T2 decay signal, in two varsity hockey teams (45 players) over one season of athletic competition. 11 players sustained a concussion during competition, and were scanned at 72 hours, 2 weeks, and 2 months post-injury. Results demonstrated a reduction in myelin water fraction at 2 weeks post-injury in several brain areas relative to preseason scans, including the splenium of the corpus callosum, right posterior thalamic radiation, left superior corona radiata, left superior longitudinal fasciculus, and left posterior limb of the internal capsule. Myelin water fraction recovered to pre-season values by 2 months post-injury. These results may indicate transient myelin disruption following a single mTBI, with subsequent remyelination of affected neurons. Myelin disruption was not apparent in the athletes who did not experience a concussion, despite exposure to repetitive subconcussive trauma over a season of collegiate hockey. These findings may help to explain many of the metabolic and neurological deficits observed clinically following mTBI.  相似文献   
98.

Colorectal cancer (CRC) is a major cause of death worldwide. Novel non-invasive, high diagnostic value screening test is urgently needed to improve survival rate, treatment and prognosis. Stable, small, circulating microRNA (miRNA) offers unique opportunities for the early diagnosis of several diseases. It acts as tumor oncogenes or suppressors and involve in cell death, survival, and metastasis. Communication between miRNA and carcinogenesis is critical but it still not clear and needs further investigation. The aim of our study is to evaluate the role of miR-210, miR-21, miR-126, as non-invasive diagnostic biomarkers for screening, early detection of CRC, studying their correlation with prognostic variables, and clarifying the roles of miRNAs on HIF-1α-VEGF signaling pathway. The expression of miR-210, miR-21 and miR-126 was performed using qRT-PCR in adenocarcinoma (no?=?35), adenomas (no?=?51), and neoplasm free controls (no?=?101). Serum levels of VEGF and HIF-1α was determined by ELISA Kit. The results show that the expression of miR-210, miR-21, VEGF, HIF-1α was significantly up-regulated while that miRNA-126 was down-regulated in both adenocarcinoma and adenomas compared with controls (p?<?0.001 for each). No significant difference was noted comparing patients with adenocarcinoma and adenomas. The three miRNAs correlated with VEGF, HIF-α. The miR-210 and miR-21 associated with TNM classification and clinical staging of adenocarcinoma (p?<?0.001) and they show high diagnostic value with sensitivity and specificity 88.6%, 90.1% and 91.4%, 95.0% respectively. Our study revealed that circulating miR-210, miR-21 were up-regulated while miR-126 was down-regulated in CRC and adenomas patients, they all correlated with TNM staging and they had high diagnostic value. HIF-1α VEGF signaling pathways regulated by miRNAs played a role in colon cancer initiation. To the best of our knowledge, this is the first study of this miRNAs panel in CRC in our community. These data suggested that these biomarkers could be a potential novel, non-invasive marker for early diagnosis, screening and predicting prognosis of CRC. Understanding the molecular functions by which miRNAs affect cancer and understanding its roles in modulating the signaling output of VEGF might be fruitful in reducing the incidence and slowing the progression of this dark malignancy.

  相似文献   
99.
Micronuclei are DNA-containing structures separate from the nucleus found in cancer cells. Micronuclei are recognized by the immune sensor axis cGAS/STING, driving cancer metastasis. The mitochondrial apoptosis apparatus can be experimentally triggered to a non-apoptotic level, and this can drive the appearance of micronuclei through the Caspase-activated DNAse (CAD). We tested whether spontaneously appearing micronuclei in cancer cells are linked to sub-lethal apoptotic signals. Inhibition of mitochondrial apoptosis or of CAD reduced the number of micronuclei in tumor cell lines as well as the number of chromosomal misalignments in tumor cells and intestinal organoids. Blockade of mitochondrial apoptosis or deletion of CAD reduced, while experimental activation CAD, STING-dependently, enhanced aggressive growth of tumor cells in vitro. Deletion of CAD from human cancer cells reduced metastasis in xenograft models. CAD-deficient cells displayed a substantially altered gene-expression profile, and a CAD-associated gene expression ‘signature’ strongly predicted survival in cancer patients. Thus, low-level activity in the mitochondrial apoptosis apparatus operates through CAD-dependent gene-induction and STING-activation and has substantial impact on metastasis in cancer.Subject terms: Metastasis, Apoptosis  相似文献   
100.
Beyond natural stimuli such as growth factors and stresses, the ability to experimentally modulate at will the levels or activity of specific intracellular signaling molecule(s) in specified cells within a tissue can be a powerful tool for uncovering new regulation and tissue behaviors. Here we perturb the levels of cAMP within specific cells of an epithelial monolayer to probe the time-dynamic behavior of cell-cell communication protocols implemented by the cAMP/PKA pathway and its coupling to the ERK pathway. The time-dependent ERK responses we observe in the perturbed cells for spatially uniform cAMP perturbations (all cells) can be very different from those due to spatially localized perturbations (a few cells). Through a combination of pharmacological and genetic perturbations, signal analysis, and computational modeling, we infer how intracellular regulation and regulated cell-cell coupling each impact the intracellular ERK response in single cells. Our approach reveals how a dynamic gap junction state helps sculpt the intracellular ERK response over time in locally perturbed cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号