首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   417篇
  免费   24篇
  441篇
  2023年   6篇
  2022年   21篇
  2021年   33篇
  2020年   31篇
  2019年   61篇
  2018年   25篇
  2017年   20篇
  2016年   27篇
  2015年   29篇
  2014年   25篇
  2013年   39篇
  2012年   34篇
  2011年   34篇
  2010年   8篇
  2009年   9篇
  2008年   9篇
  2007年   3篇
  2006年   8篇
  2005年   2篇
  2004年   6篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1996年   2篇
  1994年   1篇
排序方式: 共有441条查询结果,搜索用时 15 毫秒
101.
This study investigated whether molecules spontaneously transported inside cells, like glucose derivatives, can also be used as electropermeabilization markers. Uptake of a fluorescent deoxyglucose derivative (2-NBDG) by normal and electropermeabilized cells in culture was analyzed. 2-NBDG was added to DC-3F cell suspensions and cells, exposed or not to eight square-wave electric pulses of 100-μs duration and of appropriate field amplitude at a repetition frequency of 1 Hz or 5 kHz, were incubated at 37 °C. 2-NBDG uptake was temperature-, concentration- and time-dependent in cells submitted or not to the electric pulses. In spite of significant uptake of 2-NBDG mediated by GLUT transporters into nonpermeabilized cells, the electric pulses significantly increased about ten to hundred times the 2-NBDG uptake into the cells. The increase in the field amplitude from 900 to 1,500 V/cm resulted in a progressive increase of 2-NDBG. Our results show that under the conditions of in vivo exposure duration to FDG and the physiological concentration of d-glucose, electric pulses increased 2-NBDG uptake into electropermeabilized cells. Under our experimental conditions, the percentage of permeabilized cells within the population of cells exposed to electric pulses remained at the same level regardless of the pulse frequency used, 1 Hz or 5 kHz. The findings showed that glucose derivatives can also be used to detect electropermeabilized cells exposed to electric pulses.  相似文献   
102.
103.
104.
PURPOSE: We wished to determine whether virally- induced endothelial tumors are rejected by CD4 and CD8 lymphocytes, and whether there are differences in requirements for costimulation in the rejection of these tumors by lymphocyte subsets. EXPERIMENTAL DESIGN: We have developed a model of endothelial tumorigenesis through the sequential introduction of SV40 large T antigen and oncogenic H-ras into endothelial cells. These cells (SVR cells) form highly aggressive angiosarcomas in immunocompromised mice, but do not grow in syngeneic C57BL/6 mice. Using both acute blockade with systemic administration of antibodies and mice genetically deficient in the costimulatory molecules CD28, CD40, and CD40L, we have delineated the requirements of costimulation required to reject this virally-induced endothelial tumor. RESULTS: Control of SVR angiosarcoma is mediated through T lymphocytes, and both CD4 and CD8 lymphocytes are capable of controlling SVR angiosarcoma growth in vivo. Mice genetically deficient in CD28, CD40, and CD40L were able to reject SVR tumors, but depletion of these mice of CD8, but not CD4 cells led to rapid tumor growth. This data suggests that CD4 mediated rejection has a greater dependence of costimulation than CD8 mediated rejection. Surprisingly, acute depletion of costimulatory molecules in immunocompetent C57BL/6 mice led to rapid tumor growth. CONCLUSIONS: Significant differences exist in the immune status of mice acutely depleted of costimulatory molecules versus genetically deficient mice. Our results suggest that acute depletion is more immunosuppressive than genetic depletion. Humans who undergo costimulatory blockade may require periodic surveillance for virally-induced tumors.  相似文献   
105.
Impact-related mild traumatic brain injuries (mTBI) are a major public health concern, and remain as one of the most poorly understood injuries in the field of neuroscience. Currently, the diagnosis and management of such injuries are based largely on patient-reported symptoms. An improved understanding of the underlying pathophysiology of mTBI is urgently needed in order to develop better diagnostic and management protocols. Specifically, dynamic post-injury changes to the myelin sheath in the human brain have not been examined, despite ‘compromised white matter integrity’ often being described as a consequence of mTBI. In this preliminary cohort study, myelin water imaging was used to prospectively evaluate changes in myelin water fraction, derived from the T2 decay signal, in two varsity hockey teams (45 players) over one season of athletic competition. 11 players sustained a concussion during competition, and were scanned at 72 hours, 2 weeks, and 2 months post-injury. Results demonstrated a reduction in myelin water fraction at 2 weeks post-injury in several brain areas relative to preseason scans, including the splenium of the corpus callosum, right posterior thalamic radiation, left superior corona radiata, left superior longitudinal fasciculus, and left posterior limb of the internal capsule. Myelin water fraction recovered to pre-season values by 2 months post-injury. These results may indicate transient myelin disruption following a single mTBI, with subsequent remyelination of affected neurons. Myelin disruption was not apparent in the athletes who did not experience a concussion, despite exposure to repetitive subconcussive trauma over a season of collegiate hockey. These findings may help to explain many of the metabolic and neurological deficits observed clinically following mTBI.  相似文献   
106.
107.
108.
Plant development results from controlled cell divisions, structural modifications, and reorganizations of the cell wall. Thereby, regulation of cell wall behaviour takes place at multiple length scales involving compositional and architectural aspects in addition to various developmental and/or environmental factors. The physical properties of the primary wall are largely determined by the nature of the complex polymer network, which exhibits time-dependent behaviour representative of viscoelastic materials. Here, a dynamic nanoindentation technique is used to measure the time-dependent response and the viscoelastic behaviour of the cell wall in single living cells at a micron or sub-micron scale. With this approach, significant changes in storage (stiffness) and loss (loss of energy) moduli are captured among the tested cells. The results reveal hitherto unknown differences in the viscoelastic parameters of the walls of same-age similarly positioned cells of the Arabidopsis ecotypes (Col 0 and Ws 2). The technique is also shown to be sensitive enough to detect changes in cell wall properties in cells deficient in the activity of the chromatin modifier ATX1. Extensive computational modelling of the experimental measurements (i.e. modelling the cell as a viscoelastic pressure vessel) is used to analyse the influence of the wall thickness, as well as the turgor pressure, at the positions of our measurements. By combining the nanoDMA technique with finite element simulations quantifiable measurements of the viscoelastic properties of plant cell walls are achieved. Such techniques are expected to find broader applications in quantifying the influence of genetic, biological, and environmental factors on the nanoscale mechanical properties of the cell wall.  相似文献   
109.
Recent studies indicate that the LKB1 is a key regulator of the AMP-activated protein kinase (AMPK), which plays a crucial role in protecting cardiac muscle from damage during ischemia. We have employed mice that lack LKB1 in cardiac and skeletal muscle and studied how this affected the activity of cardiac AMPKalpha1/alpha2 under normoxic, ischemic, and anoxic conditions. In the heart lacking cardiac muscle LKB1, the basal activity of AMPKalpha2 was vastly reduced and not increased by ischemia or anoxia. Phosphorylation of AMPKalpha2 at the site of LKB1 phosphorylation (Thr172) or phosphorylation of acetyl-CoA carboxylase-2, a downstream substrate of AMPK, was ablated in ischemic heart lacking cardiac LKB1. Ischemia was found to increase the ADP-to-ATP (ADP/ATP) and AMP-to-ATP ratios (AMP/ATP) to a greater extent in LKB1-deficient cardiac muscle than in LKB1-expressing muscle. In contrast to AMPKalpha2, significant basal activity of AMPKalpha1 was observed in the lysates from the hearts lacking cardiac muscle LKB1, as well as in cardiomyocytes that had been isolated from these hearts. In the heart lacking cardiac LKB1, ischemia or anoxia induced a marked activation and phosphorylation of AMPKalpha1, to a level that was only moderately lower than observed in LKB1-expressing heart. Echocardiographic and morphological analysis of the cardiac LKB1-deficient hearts indicated that these hearts were not overtly dysfunctional, despite possessing a reduced weight and enlarged atria. These findings indicate that LKB1 plays a crucial role in regulating AMPKalpha2 activation and acetyl-CoA carboxylase-2 phosphorylation and also regulating cellular energy levels in response to ischemia. They also provide genetic evidence that an alternative upstream kinase can activate AMPKalpha1 in cardiac muscle.  相似文献   
110.
Molecular Biology Reports - This study is to investigate the binding ability of Designed Ankyrin Repeat Proteins type Ec1that was fused to Low Molecular Weight Protamine (DARPin Ec1-LMWP) protein...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号