首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   752篇
  免费   45篇
  国内免费   1篇
  2024年   2篇
  2023年   13篇
  2022年   36篇
  2021年   44篇
  2020年   50篇
  2019年   92篇
  2018年   52篇
  2017年   42篇
  2016年   42篇
  2015年   39篇
  2014年   52篇
  2013年   79篇
  2012年   66篇
  2011年   52篇
  2010年   11篇
  2009年   20篇
  2008年   23篇
  2007年   13篇
  2006年   14篇
  2005年   8篇
  2004年   10篇
  2003年   6篇
  2002年   6篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1998年   4篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1991年   4篇
  1988年   1篇
  1983年   1篇
  1981年   1篇
  1979年   2篇
排序方式: 共有798条查询结果,搜索用时 15 毫秒
21.

Cinnamon (Cinnamomum verum and C. cassia) is a medicinal plant, widely-used as a culinary spice. It possesses various therapeutic effects and can slow down the progression of neurological disorders impressively. In this article, the effects of hydro-alcohol extract and essential oil of C. verum and C. cassia and its main bioactive component cinnamaldehyde, has been examined on 6-OHDA-exposed PC12 cells as an in vitro model of Parkinson's disease. The cytotoxicity and cell apoptosis has been induced by 6-OHDA in PC12 cells. The protective effect was determined by measuring cell viability, the amount of reactive oxygen species (ROS), and apoptosis. Cell viability and apoptosis were assessed using resazurin assay, flow cytometry of propidium iodide (PI) stained cells, and western blot analysis. 6-OHDA resulted in the death and apoptosis of cells while, pretreatment with the extract and essential oil of C. verum and C. cassia at 20 µg/ml and cinnamaldehyde at 5 and 10 µM for 24 h could significantly increase the viability (p?<?0.001), and decrease ROS content (p?<?0.05). Pretreatment with the extracts increased survivin and decreased cyt-c whereas, pretreatment with the essential oil decreased cyt-c, increased survivin, and reduced P-p44/42/p44/42 levels to a level near that of the related control. The extract and essential oil of C. verum and C. cassia can be effective against 6-OHDA cytotoxicity. It is suggested that, the synergistic effects of cinnamaldehyde and other components of extract and essential oil promote cinnamon’s medicinal properties.

  相似文献   
22.
Mimicking the structure of extracellular matrix (ECM) of myocardium is necessary for fabrication of functional cardiac tissue. The superparamagnetic iron oxide nanoparticles (SPIONs, Fe3O4), as new generation of magnetic nanoparticles (NPs), are highly intended in biomedical studies. Here, SPION NPs (1 wt%) were synthesized and incorporated into silk-fibroin (SF) electrospun nanofibers to enhance mechanical properties and topography of the scaffolds. Then, the mouse embryonic cardiac cells (ECCs) were seeded on the scaffolds for in vitro studies. The SPION NPs were studied by scanning electron microscope (SEM), X-ray diffraction (XRD), and transmission electron microscope (TEM). SF nanofibers were characterized after incorporation of SPIONs by SEM, TEM, water contact angle measurement, and tensile test. Furthermore, cytocompatibility of scaffolds was confirmed by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. SEM images showed that ECCs attached to the scaffolds with elongated morphologies. Also, the real-time PCR and immunostaining studies approved upregulation of cardiac functional genes in ECCs seeded on the SF/SPION-casein scaffolds including GATA-4, cardiac troponin T, Nkx 2.5, and alpha-myosin heavy chain, compared with the ones in SF. In conclusion, incorporation of core-shells in SF supports cardiac differentiation, while has no negative impact on ECCs' proliferation and self-renewal capacity.  相似文献   
23.
Autophagy is considered as an important mechanism for maintaining homeostasis and responsible for the degradation of superfluous or potentially toxic components and organelles. Autophagy impairment is associated with a number of pathological conditions, such as aging, neurological disorders, cancer, and infection. Autophagy also plays a significant role in cancer chemotherapy. The multiple cancer drugs have been notably developed with the strategy of autophagy modulation. Statins, 3-hydroxy-3-methyl-glutaryl-CoA inhibitors, are known due to their efficacy in decreasing low-density lipoprotein and extensively used for the management of cardiovascular diseases. Statins have other therapeutic and biological activities, such as antioxidant, anti-inflammatory, antitumor, and neuroprotective known as pleiotropic effects. It seems that statins are capable of targeting various signaling pathways in the induction of their great pharmacological effects. At the present study, we demonstrate the therapeutic effects of statins mediated via autophagy regulation.  相似文献   
24.
Rapid growth in nanotechnology toward the development of nanomedicine agents holds massive promise to improve therapeutic approaches against cancer. Nanomedicine products represent an opportunity to achieve sophisticated targeting strategies and multifunctionality. Nowadays, nanoparticles (NPs) have multiple applications in different branches of science. In recent years, NPs have repetitively been reported to play a significant role in modern medicine. They have been analyzed for different clinical applications, such as drug carriers, gene delivery to tumors, and contrast agents in imaging. A wide range of nanomaterials based on organic, inorganic, lipid, or glycan compounds, as well as on synthetic polymers has been utilized for the development and improvement of new cancer therapeutics. In this study, we discuss the role of NPs in treating cancer among different drug delivery methods for cancer therapy.  相似文献   
25.
Misidentifying with Microsporum gypseum has for a long time been accounted for less prevalence of the geophilic species, Microsporum fulvum in human dermatophytosis. We describe a new case of infection with the species in an Iranian young man. Direct examination of skin scrapings revealed a tinea corporis, and morphological study of the recovered isolate from the culture resulted in the identification of M. gypseum. However, PCR amplification of ITS1-5.8S rDNA-ITS2 region and subsequent ITS-RFLP and sequencing were indicative of M. fulvum as the true causative agent. To recognize M. fulvum in human infections and to validate the morphologically distinguished isolates of M. gypseum, the genetic-based identification is strongly recommended.  相似文献   
26.
We have analysed the role of HOCl…O3 and HOCl…HOCl interactions on the stability of four estimated O3(HOCl)2 complexes by means of ab initio molecular orbital calculations. It is predicted that the O3(HOCl) + HOCl reaction is more energetically favourable than (HOCl)2 + O3 one. In all complexes, HOCl…HOCl interaction is stronger than HOCl…O3 one. The results show that the HOCl…O3 interaction strengthens the HOCl…HOCl one. On the other hand, O…H interaction in HOCl…O3 moiety is strengthened when it interacts with HOCl. Quantum theory of atoms in molecules predicts that the weak interactions in O3(HOCl)2 complexes have electrostatic characteristic. In all complexes, the charge transfer from O3 to (HOCl)2 is expected from natural bond orbital analysis.  相似文献   
27.
The interaction between bovin β-Lactoglobulin (β-LG) and retinol at two different pH values was investigated by multispectroscopic, zeta potential, molecular modeling, and conductometry measurements. The steady state and polarization fluorescence spectroscopy revealed that complex formation at two different pH values could occur through a remarkable static quenching. According to fluorescence quenching, one set of binding site at pH 2 and two sets of binding sites at pH 7 were introduced for binding of retinol to β-LG that show the enhancement of saturation score of β-LG to retinol in dimmer condition. The polarization fluorescence analysis represented that there is more affinity between β-LG and retinol at pH 7 rather than at pH 2. The effect of retinol on β-LG was studied by UV-visible, circular dichroism (CD), and synchronous fluorescence, which indicated that retinol induced more structural changes on β-LG at pH 7. β-LG–retinol complex formation at two different pH values was recorded via applying resonance light scattering (RLS) and zeta potential. Conductometry and RLS showed two different behaviors of interaction between β-LG and retinol at two different pH values; therefore, dimmer formation played important roles in different behaviors of interaction between β-LG and retinol. The zeta potential was the implied combination of electrostatic and hydrophobic forces which are involved in β-LG–retinol complex at two different pH values, and the hydrophobic interactions play a dominant role in complex formation. Molecular modeling was approved by all experimental results. The acquired results suggested that monomer and dimmer states of β-LG can be induced by retinol with different behaviors.  相似文献   
28.
Product inhibition by cellobiose decreases the rate of enzymatic cellulose degradation. The optimal reaction conditions for two Emericella (Aspergillus) nidulans-derived cellobiohydrolases I and II produced in Pichia pastoris were identified as CBHI: 52 °C, pH 4.5–6.5, and CBHII: 46 °C, pH 4.8. The optimum in a mixture of the two was 50 °C, pH 4.9. An almost fourfold increase in enzymatic hydrolysis yield was achieved with intermittent product removal of cellobiose with membrane filtration (2 kDa cut-off): The conversion of cotton cellulose after 72 h was ~19 % by weight, whereas the conversion in the parallel batch reaction was only ~5 % by weight. Also, a synergistic effect, achieving ~27 % substrate conversion, was obtained by addition of endo-1,4-β-d-glucanase. The synergistic effect was only obtained with product removal. By using pure, monoactive enzymes, the work illustrates the profound gains achievable by intermittent product removal during cellulose hydrolysis.  相似文献   
29.

Background/Objectives

Inflammatory changes on the endothelium are responsible for leukocyte recruitment to plaques in atherosclerosis. Noninvasive assessment of treatment-effects on endothelial inflammation may be of use for managing medical therapy and developing novel therapies. We hypothesized that molecular imaging of vascular cell adhesion molecule-1 (VCAM-1) with contrast enhanced ultrasound (CEU) could assess treatment effects on endothelial phenotype in early atherosclerosis.

Methods

Mice with atherosclerosis produced by gene deletion of the LDL-receptor and Apobec-1-editing protein were studied. At 12 weeks of age, mice received 8 weeks of regular chow or atorvastatin-enriched chow (10 mg/kg/day). At 20 weeks, CEU molecular imaging for aortic endothelial VCAM-1 expression was performed with VCAM-1-targeted (MBVCAM) and control microbubbles (MBCtr). Aortic wall thickness was assessed with high frequency ultrasound. Histology, immunohistology and Western blot were used to assess plaque burden and VCAM-1 expression.

Results

Plaque burden was reduced on histology, and VCAM-1 was reduced on Western blot by atorvastatin, which corresponded to less endothelial expression of VCAM-1 on immunohistology. High frequency ultrasound did not detect differences in aortic wall thickness between groups. In contrast, CEU molecular imaging demonstrated selective signal enhancement for MBVCAM in non-treated animals (MBVCAM 2±0.3 vs MBCtr 0.7±0.2, p<0.01), but not in statin-treated animals (MBVCAM 0.8±0.2 vs MBCtr 1.0±0.2, p = ns; p<0.01 for the effect of statin on MBVCAM signal).

Conclusions

Non-invasive CEU molecular imaging detects the effects of anti-inflammatory treatment on endothelial inflammation in early atherosclerosis. This easily accessible, low-cost technique may be useful in assessing treatment effects in preclinical research and in patients.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号