首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   14篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   8篇
  2016年   4篇
  2015年   3篇
  2014年   6篇
  2013年   11篇
  2012年   4篇
  2011年   6篇
  2010年   8篇
  2009年   2篇
  2008年   7篇
  2007年   3篇
  2006年   5篇
  2004年   1篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1995年   2篇
  1993年   2篇
  1991年   1篇
  1974年   1篇
  1967年   1篇
  1963年   1篇
  1957年   2篇
  1954年   1篇
排序方式: 共有98条查询结果,搜索用时 171 毫秒
41.
Despite recent findings on the ecological relevance of within population diet variation far less attention has been devoted to the role diet variation for ecological services. Seed dispersal is a key ecological service, affecting plant fitness and regeneration based on foraging by fruit‐eating vertebrates. Here we used a network approach, widely used to understand how seed‐dispersal is organized at the species level, to gain insights into the patterns that emerge at the individual‐level. We studied the individual fruit consumption behavior of a South American didelphid Didelphis albiventris, during the cool–dry and warm–wet seasons. In species–species networks the heterogeneity in specialization levels generates patterns such as nestedness and asymmetry. Because generalist populations may be comprised of specialized individuals, we hypo thesized that network structural properties, such as nestedness, should also emerge at the individual level. We detected variation in fruit consumption that was not related to resource availability, ontogenetic or sexual factors or sampling biases. Such variation resulted in the structural patterns often found in species–species seed‐dispersal networks: low connectance, a high degree of nestedness and the absence of modules. Moreover structure varied between the warm–wet and cool–dry seasons, presumably as a consequence of seasonal fluctuation in fruit availability. Our findings suggest individuals may differ in selectivity causing asymmetries in seed dispersal efficiency within the population. In this sense the realized dispersal would differ from the expected dispersal estimated from their average dispersal potential. Additionally the results suggest possible frequency‐dependent effects on seed dispersal that might affect individual plant performance and plant community composition.  相似文献   
42.
43.
44.
Background aimsClinical trials for therapeutic angiogenesis use blood- or bone marrow-derived hematopoietic cells, endothelial progenitor cells (EPC) and mesenchymal stromal cells (MSC) for vascular regeneration. Recently concerns have emerged that all three cell types could also contribute to atherosclerosis by foam cell formation. Therefore, we asked whether human myelomonocytic cells, EPC or MSC can accumulate lipid droplets (LD) and develop into foam cells.MethodsLD accumulation was quantified by flow cytometry, confocal microscopy and cholesterol measurement in each of the cell types. The impact of an initial pro-angiogenic induction on subsequent foam cell formation was studied to mimic relevant settings already used in clinical trials. The phosphorylation state of intracellular signaling molecules in response to the pro-angiogenic stimulation was determined to delineate the operative mechanisms and establish a basis for interventional strategies.ResultsFoam cells were formed by monocytes but not by EPC or MSC after pro-angiogenic induction. Mitogen-activated protein kinase (MAPK) p38 phosphorylation was enhanced and kinase inhibition almost abrogated intracellular LD accumulation in monocytes.ConclusionsThese data suggest that hematopoietic cell preparations containing monocytes bear the risk of foam cell formation after pro-angiogenic induction. Instead, EPC and MSC may drive vascular regeneration without atherogenesis aggravation. A thorough understanding of cell biology is necessary to develop new strategies combining pro-angiogenic and anti-atherogenic effects during cell therapy.  相似文献   
45.
46.
Regulation of gene expression by microRNAs (miRNAs) is now considered as an essential mechanism for cell development and homeostasis. Indeed, numerous studies have reported that modulating their expression, maturation, or activity can affect cell survival, identity or activation. In particular, miRNAs are key players in the tight regulation of signaling cascades, and as such, they appear as perfectly suited immunomodulators. Several immune-related processes, including inflammation, have recently been demonstrated to require specific miRNAs. In addition, the discovery of herpesvirus-encoded miRNAs has reinforced this assumption. To decipher the potential roles of miRNAs in innate antiviral immune response, we developed an in vivo model based on the inoculation of mouse cytomegalovirus (MCMV) in mice. Furthermore, we exploited a mouse line carrying a hypomorphic mutation in the Dicer gene to visualize the impact of impaired miRNA biogenesis upon the anti-MCMV response. Our data indicate that miRNAs are important actors in mounting an efficient response against herpesviruses. We suggest that a rapid and transient interferon response following viral infection requires miRNA-dependent repressor release. In addition, our in vivo efforts identified several miRNA targets, thus providing a conceptual framework for future analyzes on the regulation of specific actors involved in the Type I interferon pathway.  相似文献   
47.
The B-box motif is the defining feature of the TRIM family of proteins, characterized by a RING finger-B-box-coiled coil tripartite fold. We have elucidated the crystal structure of B-box 2 (B2) from MuRF1, a TRIM protein that supports a wide variety of protein interactions in the sarcomere and regulates the trophic state of striated muscle tissue. MuRF1 B2 coordinates two zinc ions through a cross-brace alpha/beta-topology typical of members of the RING finger superfamily. However, it self-associates into dimers with high affinity. The dimerization pattern is mediated by the helical component of this fold and is unique among RING-like folds. This B2 reveals a long shallow groove that encircles the C-terminal metal binding site ZnII and appears as the defining protein-protein interaction feature of this domain. A cluster of conserved hydrophobic residues in this groove and, in particular, a highly conserved aromatic residue (Y133 in MuRF1 B2) is likely to be central to this role. We expect these findings to aid the future exploration of the cellular function and therapeutic potential of MuRF1.  相似文献   
48.
According to apparent competition theory, the co‐occurrence of two species that share the same predators appears to affect each other's population growth and abundance. However, due to habitat loss and over‐hunting, top predators are being made rare worldwide. Considering that apparent competitors share similar resources, we would expect the absence of top predators to reflect in changes on prey realized trophic niches. To test our hypothesis, we developed a model to predict the abundance ratio of apparent competitor species based on changes in their realized trophic niches. We tested our model against field data on the Neotropical marsupials Didelphis aurita and Metachirus nudicaudatus. Our results revealed that D. aurita and M. nudicaudatus are two species under apparent competition and their realized trophic niche and diet overlap change according to the presence of top predators. The model was able to predict the actual relative abundances of D. aurita and M. nudicaudatus in the three empirical studies analyzed. Our study presents quantitative support to the apparent competition theory; however, the model's applications to other groups still need to be verified. Additionally, our study shows that the lack of top predators has consequences on the realized trophic niche of their prey, and therefore, we reinforce that conservation plans need to focus on the effects of top predator loss on ecosystems.  相似文献   
49.

Background

Epidemiological studies have linked maternal infection during pregnancy to later development of neuropsychiatric disorders in the offspring. In mice, experimental inflammation during embryonic development impairs behavioral and cognitive performances in adulthood. Synaptic dysfunctions may be at the origin of cognitive impairments, however the link between prenatal inflammation and synaptic defects remains to be established.

Methodology/Principal Findings

In this study, we show that prenatal alteration of microglial function, including inflammation, induces delayed synaptic dysfunction in the adult. DAP12 is a microglial signaling protein expressed around birth, mutations of which in the human induces the Nasu-Hakola disease, characterized by early dementia. We presently report that synaptic excitatory currents in mice bearing a loss-of-function mutation in the DAP12 gene (DAP12KI mice) display enhanced relative contribution of AMPA. Furthermore, neurons from DAP12KI P0 pups cultured without microglia develop similar synaptic alterations, suggesting that a prenatal dysfunction of microglia may impact synaptic function in the adult. As we observed that DAP12KI microglia overexpress genes for IL1β, IL6 and NOS2, which are inflammatory proteins, we analyzed the impact of a pharmacologically-induced prenatal inflammation on synaptic function. Maternal injection of lipopolysaccharides induced activation of microglia at birth and alteration of glutamatergic synapses in the adult offspring. Finally, neurons cultured from neonates born to inflamed mothers and cultured without microglia also displayed altered neuronal activity.

Conclusion/Significance

Our results demonstrate that prenatal inflammation is sufficient to induce synaptic alterations with delay. We propose that these alterations triggered by prenatal activation of microglia provide a cellular basis for the neuropsychiatric defects induced by prenatal inflammation.  相似文献   
50.
We have designed a modified version of the Dam identification technique and used it to probe higher-order chromatin structure in Saccharomyces cerevisiae. We fused the bacterial DNA methyltransferase Dam to the DNA-binding domain of TetR and targeted the resulting chimera to Tet operators inserted in the yeast genome at the repressed locus HML. We then monitored the methylation status of HML and other sequences by a quantitative technique combining methylation-sensitive restriction and real-time PCR. As expected, we found that TetR-Dam efficiently methylated HML in cis. More strikingly, when TetR-Dam was present at HML, we observed increased methylation in the III-L subtelomeric region but not in intervening sequences. This effect was lost when the HML silencers were inactivated by mutations. When the HM silencers and the Tet operators were transferred to a plasmid, strong methylation was clearly observed not only in the III-L subtelomeric region but also at other telomeres. These data indicate that HM silencers can specifically associate with telomeres, even those located on different chromosomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号