全文获取类型
收费全文 | 952篇 |
免费 | 63篇 |
专业分类
1015篇 |
出版年
2023年 | 8篇 |
2022年 | 16篇 |
2021年 | 30篇 |
2020年 | 10篇 |
2019年 | 22篇 |
2018年 | 28篇 |
2017年 | 27篇 |
2016年 | 33篇 |
2015年 | 59篇 |
2014年 | 68篇 |
2013年 | 87篇 |
2012年 | 104篇 |
2011年 | 92篇 |
2010年 | 40篇 |
2009年 | 44篇 |
2008年 | 70篇 |
2007年 | 56篇 |
2006年 | 49篇 |
2005年 | 44篇 |
2004年 | 33篇 |
2003年 | 26篇 |
2002年 | 19篇 |
2001年 | 2篇 |
1999年 | 2篇 |
1998年 | 4篇 |
1997年 | 6篇 |
1996年 | 6篇 |
1995年 | 1篇 |
1994年 | 1篇 |
1993年 | 3篇 |
1992年 | 1篇 |
1991年 | 4篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1985年 | 1篇 |
1983年 | 2篇 |
1981年 | 3篇 |
1980年 | 2篇 |
1979年 | 2篇 |
1978年 | 2篇 |
1977年 | 1篇 |
1973年 | 1篇 |
1972年 | 1篇 |
1971年 | 1篇 |
1970年 | 1篇 |
1966年 | 1篇 |
排序方式: 共有1015条查询结果,搜索用时 0 毫秒
991.
Bachetti T Di Zanni E Balbi P Ravazzolo R Sechi G Ceccherini I 《Experimental cell research》2012,318(15):1844-1854
Heterozygous mutations of the GFAP gene are responsible for Alexander disease, a neurodegenerative disorder characterized by intracytoplasmic Rosenthal fibers (RFs) in dystrophic astrocytes. In vivo and in vitro models have shown co-localization of mutant GFAP proteins with the small heat shock proteins (sHSPs) HSP27 and alphaB-crystallin, ubiquitin and proteasome components. Results reported by several recent studies agree on ascribing an altered cytoskeletal pattern to mutant GFAP proteins, an effect which induces mutant proteins accumulation, leading to impaired proteasome function and autophagy induction. On the basis of the protective role shown by both these small heat shock proteins (sHSPs), and on the already well established neuroprotective effects of curcumin in several diseases, we have investigated the effects of this compound in an in vitro model of Alexander disease, consisting in U251-MG astrocytoma cells transiently transfected with a construct encoding for GFAP carrying the p.R239C mutation in frame with the reporter green fluorescent protein (GFP). In particular, depending on the dose used, we have observed that curcumin is able to induce both HSP27 and alphaB-crystallin, to reduce expression of both RNA and protein of endogenous GFAP, to induce autophagy and, finally, to rescue the filamentous organization of the GFAP mutant protein, thus suggesting a role of this spice in counteracting the pathogenic effects of GFAP mutations. 相似文献
992.
993.
Serratia marcescens is an opportunistic human pathogen that represents a growing problem for public health, particularly in hospitalized or immunocompromised patients. However, little is known about factors and mechanisms that contribute to S. marcescens pathogenesis within its host. In this work, we explore the invasion process of this opportunistic pathogen to epithelial cells. We demonstrate that once internalized, Serratia is able not only to persist but also to multiply inside a large membrane-bound compartment. This structure displays autophagic-like features, acquiring LC3 and Rab7, markers described to be recruited throughout the progression of antibacterial autophagy. The majority of the autophagic-like vacuoles in which Serratia resides and proliferates are non-acidic and have no degradative properties, indicating that the bacteria are capable to either delay or prevent fusion with lysosomal compartments, altering the expected progression of autophagosome maturation. In addition, our results demonstrate that Serratia triggers a non-canonical autophagic process before internalization. These findings reveal that S. marcescens is able to manipulate the autophagic traffic, generating a suitable niche for survival and proliferation inside the host cell. 相似文献
994.
995.
Ascorbate oxidase (AAO) is a large, multidomain, dimeric protein whose folding/unfolding pathway is characterized by a complex, multistep process. Here we used fluorescence correlation spectroscopy to demonstrate the formation of partially folded monomers by pH-induced full dissociation into subunits. Hence, the structural features of monomeric AAO could be studied by fluorescence and CD spectroscopy. We found that the monomers keep their secondary structure, whereas subtle conformational changes in the tertiary structure become apparent. AAO dissociation has also been studied when unfolding the protein by high hydrostatic pressure at different pH values. A strong protein concentration dependence was observed at pH 8, whereas the enzyme was either monomeric or dimeric at pH 10 and 6, respectively. The calculated volume change associated with the unfolding of monomeric AAO, ΔV ~ -55 mL·mol(-1), is in the range observed for most proteins of the same size. These findings demonstrate that partially folded monomeric species might populate the energy landscape of AAO and that the overall AAO stability is crucially controlled by a few quaternary interactions at the subunits' interface. 相似文献
996.
997.
998.
Eleonora Chiri Chris Greening Rachael Lappan David W. Waite Thanavit Jirapanjawat Xiyang Dong Stefan K. Arndt Philipp A. Nauer 《The ISME journal》2020,14(11):2715
Termite mounds have recently been confirmed to mitigate approximately half of termite methane (CH4) emissions, but the aerobic CH4 oxidising bacteria (methanotrophs) responsible for this consumption have not been resolved. Here, we describe the abundance, composition and CH4 oxidation kinetics of the methanotroph communities in the mounds of three distinct termite species sampled from Northern Australia. Results from three independent methods employed show that methanotrophs are rare members of microbial communities in termite mounds, with a comparable abundance but distinct composition to those of adjoining soil samples. Across all mounds, the most abundant and prevalent methane monooxygenase sequences were affiliated with upland soil cluster α (USCα), with sequences homologous to Methylocystis and tropical upland soil cluster (TUSC) also detected. The reconstruction of a metagenome-assembled genome of a mound USCα representative highlighted the metabolic capabilities of this group of methanotrophs. The apparent Michaelis–Menten kinetics of CH4 oxidation in mounds were estimated from in situ reaction rates. Methane affinities of the communities were in the low micromolar range, which is one to two orders of magnitude higher than those of upland soils, but significantly lower than those measured in soils with a large CH4 source such as landfill cover soils. The rate constant of CH4 oxidation, as well as the porosity of the mound material, were significantly positively correlated with the abundance of methanotroph communities of termite mounds. We conclude that termite-derived CH4 emissions have selected for distinct methanotroph communities that are kinetically adapted to elevated CH4 concentrations. However, factors other than substrate concentration appear to limit methanotroph abundance and hence these bacteria only partially mitigate termite-derived CH4 emissions. Our results also highlight the predominant role of USCα in an environment with elevated CH4 concentrations and suggest a higher functional diversity within this group than previously recognised.Subject terms: Soil microbiology, Biogeochemistry 相似文献
999.
1000.
Eleonora Cerasoli Sharon M Kelly John R Coggins Deborah J Boam David T Clarke Nicholas C Price 《European journal of biochemistry》2002,269(8):2124-2132
Shikimate kinase was chosen as a convenient representative example of the subclass of alpha/beta proteins with which to examine the mechanism of protein folding. In this paper we report on the refolding of the enzyme after denaturation in urea. As shown by the changes in secondary and tertiary structure monitored by far UV circular dichroism (CD) and fluorescence, respectively, the enzyme was fully unfolded in 4 m urea. From an analysis of the unfolding curve in terms of the two-state model, the stability of the folded state could be estimated as 17 kJ.mol-1. Approximately 95% of the enzyme activity could be recovered on dilution of the urea from 4 to 0.36 m. The results of spectroscopic studies indicated that refolding occurred in at least four kinetic phases, the slowest of which (k = 0.009 s-1) corresponded with the regain of shikimate binding and of enzyme activity. The two most rapid phases were associated with a substantial increase in the binding of 8-anilino-1-naphthalenesulfonic acid with only modest changes in the far UV CD, indicating that a collapsed intermediate with only partial native secondary structure was formed rapidly. The relevance of the results to the folding of other alpha/beta domain proteins is discussed. 相似文献