首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1368篇
  免费   68篇
  1436篇
  2023年   8篇
  2022年   21篇
  2021年   33篇
  2020年   17篇
  2019年   29篇
  2018年   32篇
  2017年   35篇
  2016年   45篇
  2015年   65篇
  2014年   74篇
  2013年   92篇
  2012年   121篇
  2011年   105篇
  2010年   54篇
  2009年   51篇
  2008年   92篇
  2007年   68篇
  2006年   74篇
  2005年   54篇
  2004年   49篇
  2003年   38篇
  2002年   35篇
  2001年   18篇
  2000年   12篇
  1999年   9篇
  1997年   7篇
  1996年   7篇
  1992年   5篇
  1991年   8篇
  1990年   7篇
  1989年   14篇
  1988年   8篇
  1987年   6篇
  1986年   9篇
  1985年   6篇
  1980年   6篇
  1979年   10篇
  1978年   5篇
  1977年   7篇
  1976年   9篇
  1975年   10篇
  1974年   8篇
  1972年   5篇
  1971年   5篇
  1970年   9篇
  1969年   7篇
  1968年   5篇
  1967年   6篇
  1966年   7篇
  1965年   4篇
排序方式: 共有1436条查询结果,搜索用时 15 毫秒
31.
32.
An endoxylanase (β-1,4-xylan xylanohydrolase, EC 3.2.1.8) was purified from the culture filtrate of a strain of Aspergillus versicolor grown on oat wheat. The enzyme was purified to homogeneity by chromatography on DEAE-cellulose and Sephadex G-75. The purified enzyme was a monomer of molecular mass estimated to be 19 kDa by SDS-PAGE and gel filtration. The enzyme was glycoprotein with 71% carbohydrate content and exhibited a pI of 5.4. The purified xylanase was specific for xylan hydrolysis. The enzyme had a K m of 6.5 mg ml−1 and a V max of 1440 U (mg protein)−1.  相似文献   
33.
Transition from proliferative‐to‐invasive phenotypes promotes metastasis and therapy resistance in melanoma. Reversion of the invasive phenotype, however, is challenged by the poor understanding of mechanisms underlying its maintenance. Here, we report that the lncRNA TINCR is down‐regulated in metastatic melanoma and its silencing increases the expression levels of invasive markers, in vitro migration, in vivo tumor growth, and resistance to BRAF and MEK inhibitors. The critical mediator is ATF4, a central player of the integrated stress response (ISR), which is activated in TINCR‐depleted cells in the absence of starvation and eIF2α phosphorylation. TINCR depletion increases global protein synthesis and induces translational reprogramming, leading to increased translation of mRNAs encoding ATF4 and other ISR proteins. Strikingly, re‐expression of TINCR in metastatic melanoma suppresses the invasive phenotype, reduces numbers of tumor‐initiating cells and metastasis formation, and increases drug sensitivity. Mechanistically, TINCR interacts with mRNAs associated with the invasive phenotype, including ATF4, preventing their binding to ribosomes. Thus, TINCR is a suppressor of the melanoma invasive phenotype, which functions in nutrient‐rich conditions by repressing translation of selected ISR RNAs.  相似文献   
34.
Stress granules (SGs) are dynamic condensates associated with protein misfolding diseases. They sequester stalled mRNAs and signaling factors, such as the mTORC1 subunit raptor, suggesting that SGs coordinate cell growth during and after stress. However, the molecular mechanisms linking SG dynamics and signaling remain undefined. We report that the chaperone Hsp90 is required for SG dissolution. Hsp90 binds and stabilizes the dual‐specificity tyrosine‐phosphorylation‐regulated kinase 3 (DYRK3) in the cytosol. Upon Hsp90 inhibition, DYRK3 dissociates from Hsp90 and becomes inactive. Inactive DYRK3 is subjected to two different fates: it either partitions into SGs, where it is protected from irreversible aggregation, or it is degraded. In the presence of Hsp90, DYRK3 is active and promotes SG disassembly, restoring mTORC1 signaling and translation. Thus, Hsp90 links stress adaptation and cell growth by regulating the activity of a key kinase involved in condensate disassembly and translation restoration.  相似文献   
35.
An open question in environmental ecology regards the mechanisms triggered by root chemistry to drive the assembly and functionality of a beneficial microbiome to rapidly adapt to stress conditions. This phenomenon, originally described in plant defence against pathogens and predators, is encompassed in the ‘cry-for-help’ hypothesis. Evidence suggests that this mechanism may be part of the adaptation strategy to ensure the holobiont fitness in polluted environments. Polychlorinated biphenyls (PCBs) were considered as model pollutants due to their toxicity, recalcitrance and poor phyto-extraction potential, which lead to a plethora of phytotoxic effects and rise environmental safety concerns. Plants have inefficient detoxification processes to catabolize PCBs, even leading to by-products with a higher toxicity. We propose that the ‘cry-for-help’ mechanism could drive the exudation-mediated recruitment and sustainment of the microbial services for PCBs removal, exerted by an array of anaerobic and aerobic microbial degrading populations working in a complex metabolic network. Through this synergistic interaction, the holobiont copes with the soil contamination, releasing the plant from the pollutant stress by the ecological services provided by the boosted metabolism of PCBs microbial degraders. Improving knowledge of root chemistry under PCBs stress is, therefore, advocated to design rhizoremediation strategies based on plant microbiome engineering.  相似文献   
36.
DNA damage is emerging as a driver of heart disease, although the cascade of events, its timing, and the cell types involved are yet to be fully clarified. In this context, the implication of cardiomyocytes has been highlighted, while that of vasculature smooth muscle cells has been implicated but not explored exhaustively. In our previous work we characterized a factor called Ft1 in mice and AKTIP in humans whose depletion generates telomere instability and DNA damage. Herein, we explored the effect of the reduction of Ft1 on the heart with the goal of comparatively defining the impact of DNA damage targeted to vasculature smooth muscle cells to that of diffuse damage. Using two newly generated mouse models, Ft1 constitutively knocked out (Ft1ko) mice, and mice in which we targeted the Ft1 depletion to the smooth muscle cells (Ft1sm22ko), it is shown that both genetic models display cardiac defects but with differences. Both Ft1ko and Ft1sm22ko mice display hypertrophy, fibrosis, and functional heart defects. Interestingly, Ft1sm22ko mice have early milder pathological traits that become manifest with age. Significantly, the defects of Ft1ko mice, including the alteration of the left ventricle and functional heart defects, are rescued by depletion of the DNA damage sensor p53. These results point to Ft1 deficiency as a driver of cardiac disease and show that Ft1 deficiency targeted to vasculature smooth muscle cells generates a pre-pathological profile exacerbated by age.  相似文献   
37.
Gene expression patterns in response to hydrostatic pressure were determined by whole genome microarray hybridization. Functional classification of the 274 genes affected by pressure treatment of 200 MPa for 30 min revealed a stress response expression profile. The majority of the >2-fold upregulated genes were involved in stress defense and carbohydrate metabolism while most of the repressed ones were in cell cycle progression and protein synthesis categories. Furthermore, uncharacterized genes were among the 10 highest expressed sequences and represented 45% of the total upregulated genes. The results of this study revealed a hydrostatic pressure-specific stress response pattern and suggested interesting information about the mechanisms involved in adaptation of cells to a high-pressure environment.  相似文献   
38.
Group I metabotropic glutamate receptors (mGlu1 and mGlu5) are coupled to polyphosphoinositide hydrolysis and are involved in activity-dependent forms of synaptic plasticity, both during development and in the adult life. Group I mGlu receptors can also regulate proliferation, differentiation, and survival of neural stem/progenitor cells, which further support their role in brain development. An exaggerated response to activation of mGlu5 receptors may underlie synaptic dysfunction in Fragile X syndrome, the most common inherited form of mental retardation. In addition, group I mGlu receptors are overexpressed in dysplastic neurons of focal cortical dysplasia and hemimegaloencephaly, which are disorders of cortical development associated with chronic epilepsy. Drugs that block the activity of group I mGlu receptors (in particular, mGlu5 receptors) are potentially helpful for the treatment of Fragile X syndrome and perhaps other neurodevelopmental disorders.  相似文献   
39.
Vorobyev  P. O.  Babaeva  F. E.  Panova  A. V.  Shakiba  J.  Kravchenko  S. K.  Soboleva  A. V.  Lipatova  A. V. 《Molecular Biology》2022,56(5):684-695
Molecular Biology - Cancer is a leading causes of death. Despite significant success in the treatment of lymphatic system tumors, the problems of relapse, drug resistance and effectiveness of...  相似文献   
40.
TRPV1 (transient receptor potential vanilloid 1) proteins are heat-activated nonselective cation channels. TRPV1 channels are polymodal in their function and exhibit multifaceted regulation with various molecular compounds. In this regard, phosphoinositides, particularly phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-phosphate, are important channel regulators. However, their effects on TRPV1 channel activity have not been conclusively determined. To characterize temperature-induced activation of TRPV1 in the presence of different phospholipids, we purified the TRPV1 protein from HEK-293 cells and incorporated it into planar lipid bilayers. In the presence of 2.5 μm phosphatidylinositol 4,5-bisphosphate, TRPV1 channels demonstrated rapid activation at 33–39 °C and achieved full channel opening at 42 °C. At this temperature range, TRPV1 heat activation exhibited steep temperature dependence (temperature coefficient (Q10) of 18), and the channel openings were accompanied by large changes in entropy and enthalpy, suggesting a substantial conformation change. At a similar temperature range, another phosphoinositide, phosphatidylinositol 4-phosphate, also potentiated heat activation of TRPV1, but with much lower efficiency. Negatively charged phosphatidylglycerol could also induce heat activation of TRPV1 channels, although with a small-conductance state. Our data demonstrate that phospholipids, specifically phosphoinositides, are important regulators of TRPV1 and are required for heat-induced channel activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号