首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   683篇
  免费   33篇
  国内免费   1篇
  2023年   6篇
  2022年   8篇
  2021年   22篇
  2020年   8篇
  2019年   17篇
  2018年   25篇
  2017年   17篇
  2016年   27篇
  2015年   42篇
  2014年   47篇
  2013年   50篇
  2012年   61篇
  2011年   48篇
  2010年   35篇
  2009年   29篇
  2008年   44篇
  2007年   49篇
  2006年   39篇
  2005年   29篇
  2004年   23篇
  2003年   28篇
  2002年   21篇
  2001年   3篇
  2000年   4篇
  1999年   4篇
  1998年   5篇
  1997年   3篇
  1996年   6篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有717条查询结果,搜索用时 15 毫秒
651.
652.
Microbially induced carbonate precipitation (MICP) applied in the construction industry poses several disadvantages such as ammonia release to the air and nitric acid production. An alternative MICP from calcium formate by Methylocystis parvus OBBP is presented here to overcome these disadvantages. To induce calcium carbonate precipitation, M. parvus was incubated at different calcium formate concentrations and starting culture densities. Up to 91.4% ± 1.6% of the initial calcium was precipitated in the methane-amended cultures compared to 35.1% ± 11.9% when methane was not added. Because the bacteria could only utilize methane for growth, higher culture densities and subsequently calcium removals were exhibited in the cultures when methane was added. A higher calcium carbonate precipitate yield was obtained when higher culture densities were used but not necessarily when more calcium formate was added. This was mainly due to salt inhibition of the bacterial activity at a high calcium formate concentration. A maximum 0.67 ± 0.03 g of CaCO3 g of Ca(CHOOH)2−1 calcium carbonate precipitate yield was obtained when a culture of 109 cells ml−1 and 5 g of calcium formate liter−1 were used. Compared to the current strategy employing biogenic urea degradation as the basis for MICP, our approach presents significant improvements in the environmental sustainability of the application in the construction industry.  相似文献   
653.
In order to sustain a persistent infection, Mycobacterium tuberculosis (Mtb) must adapt to a changing environment that is shaped by the developing immune response. This necessity to adapt is evident in the flexibility of many aspects of Mtb metabolism, including a respiratory chain that consists of two distinct terminal cytochrome oxidase complexes. Under the conditions tested thus far, the bc1/aa3 complex appears to play a dominant role, while the alternative bd oxidase is largely redundant. However, the presence of two terminal oxidases in this obligate pathogen implies that respiratory requirements might change during infection. We report that the cytochrome bd oxidase is specifically required for resisting the adaptive immune response. While the bd oxidase was dispensable for growth in resting macrophages and the establishment of infection in mice, this complex was necessary for optimal fitness after the initiation of adaptive immunity. This requirement was dependent on lymphocyte-derived interferon gamma (IFNγ), but did not involve nitrogen and oxygen radicals that are known to inhibit respiration in other contexts. Instead, we found that ΔcydA mutants were hypersusceptible to the low pH encountered in IFNγ-activated macrophages. Unlike wild type Mtb, cytochrome bd-deficient bacteria were unable to sustain a maximal oxygen consumption rate (OCR) at low pH, indicating that the remaining cytochrome bc1/aa3 complex is preferentially inhibited under acidic conditions. Consistent with this model, the potency of the cytochrome bc1/aa3 inhibitor, Q203, is dramatically enhanced at low pH. This work identifies a critical interaction between host immunity and pathogen respiration that influences both the progression of the infection and the efficacy of potential new TB drugs.  相似文献   
654.
655.
We investigated lipid profiles and lipoprotein modification after immuno-intervention in patients with early rheumatoid arthritis (ERA). Fifty-eight patients with ERA who met the American College of Rheumatology (ACR) criteria were included in the study. These patients had disease durations of less than one year and had not had prior treatment for it. Smokers or patients suffering from diabetes mellitus, hypothyroidism, liver or kidney disease, Cushing's syndrome, obesity, familiar dyslipidemia and those receiving medications affecting lipid metabolism were excluded from the study. Sixty-three healthy volunteers (controls) were also included. Patients were treated with methotrexate and prednisone. Lipid profiles, disease activity for the 28 joint indices score (DAS-28) as well as ACR 50% response criteria were determined for all patients. The mean DAS-28 at disease onset was 5.8 +/- 0.9. After a year of therapy, 53 (91.3%) patients achieved the ACR 20% response criteria, while 45 (77.6%) attained the ACR 50% criteria. In addition, a significant decrease in the DAS-28, C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) were observed. ERA patients exhibited higher serum levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and triglycerides, whereas their serum high-density lipoprotein cholesterol (HDL-C) levels were significantly lower compared to controls. As a consequence, the atherogenic ratio of TC/HDL-C as well as that of LDL-C/HDL-C was significantly higher in ERA patients compared to controls. After treatment, a significant reduction of the atherogenic ratio of TC/HDL-C as well as that of LDL-C/HDL-C was observed, a phenomenon primarily due to the increase of serum HDL-C levels. These changes were inversely correlated with laboratory changes, especially CRP and ESR. In conclusion, ERA patients are characterized by an atherogenic lipid profile, which improves after therapy. Thus, early immuno-intervention to control disease activity may reduce the risk of the atherosclerotic process and cardiovascular events in ERA patients.  相似文献   
656.
Amine or amide derivatives bearing the 2,6-di-tert-butyl phenol moiety are synthesised. Almost all are antioxidants, reduce acute inflammation and inhibit COX-1 and lipoxygenase activity. The most potent anti-inflammatory, COX-1 inhibitor and antioxidant agent, with low toxicity, is 2,6-di-tert-butyl-4-thiomorpholin-4-ylmethyl-phenol.  相似文献   
657.
Structure-based inhibitor design has led to the discovery of a number of potent inhibitors of glycogen phosphorylase b (GPb), N-acyl derivatives of beta-D-glucopyranosylamine, that bind at the catalytic site of the enzyme. The first good inhibitor in this class of compounds, N-acetyl-beta-D-glucopyranosylamine (NAG) (K(i) = 32 microM), has been previously characterized by biochemical, biological and crystallographic experiments at 2.3 angstroms resolution. Bioisosteric replacement of the acetyl group by trifluoroacetyl group resulted in an inhibitor, N-trifluoroacetyl-beta-D-glucopyranosylamine (NFAG), with a K(i) = 75 microM. To elucidate the structural basis of its reduced potency, we determined the ligand structure in complex with GPb at 1.8 angstroms resolution. To compare the binding mode of N-trifluoroacetyl derivative with that of the lead molecule, we also determined the structure of GPb-NAG complex at a higher resolution (1.9 angstroms). NFAG can be accommodated in the catalytic site of T-state GPb at approximately the same position as that of NAG and stabilize the T-state conformation of the 280 s loop by making several favourable contacts to Asn284 of this loop. The difference observed in the K(i) values of the two analogues can be interpreted in terms of subtle conformational changes of protein residues and shifts of water molecules in the vicinity of the catalytic site, variations in van der Waals interaction, and desolvation effects.  相似文献   
658.
In eukaryotes, three pairs of structural-maintenance-of-chromosome (SMC) proteins are found in conserved multisubunit protein complexes required for chromosomal organization. Cohesin, the Smc1/3 complex, mediates sister chromatid cohesion while two condensin complexes containing Smc2/4 facilitate chromosome condensation. Smc5/6 scaffolds an essential complex required for homologous recombination repair. We have examined the response of smc6 mutants to the inhibition of DNA replication. We define homologous recombination-dependent and -independent functions for Smc6 during replication inhibition and provide evidence for a Rad60-independent function within S phase, in addition to a Rad60-dependent function following S phase. Both genetic and physical data show that when forks collapse (i.e., are not stabilized by the Cds1Chk2 checkpoint), Smc6 is required for the effective repair of resulting lesions but not for the recruitment of recombination proteins. We further demonstrate that when the Rad60-dependent, post-S-phase Smc6 function is compromised, the resulting recombination-dependent DNA intermediates that accumulate following release from replication arrest are not recognized by the G2/M checkpoint.  相似文献   
659.
660.
Glutamate dehydrogenase (GDH) may be a stress-responsive enzyme, as GDH exhibits considerable thermal stability, and de novo synthesis of the alpha-GDH subunit is induced by exogenous ammonium and senescence. NaCl treatment induces reactive oxygen species (ROS), intracellular ammonia, expression of tobacco (Nicotiana tabacum cv Xanthi) gdh-NAD;A1 encoding the alpha-subunit of GDH, increase in immunoreactive alpha-polypeptide, assembly of the anionic isoenzymes, and in vitro GDH aminating activity in tissues from hypergeous plant organs. In vivo aminating GDH activity was confirmed by gas chromatorgraphy-mass spectrometry monitoring of (15)N-Glu, (15)N-Gln, and (15)N-Pro in the presence of methionine sulfoximine and amino oxyacetic acid, inhibitors of Gln synthetase and transaminases, respectively. Along with upregulation of alpha-GDH by NaCl, isocitrate dehydrogenase genes, which provide 2-oxoglutarate, are also induced. Treatment with menadione also elicits a severalfold increase in ROS and immunoreactive alpha-polypeptide and GDH activity. This suggests that ROS participate in the signaling pathway for GDH expression and protease activation, which contribute to intracellular hyperammonia. Ammonium ions also mimic the effects of salinity in induction of gdh-NAD;A1 expression. These results, confirmed in tobacco and grape (Vitis vinifera cv Sultanina) tissues, support the hypothesis that the salinity-generated ROS signal induces alpha-GDH subunit expression, and the anionic iso-GDHs assimilate ammonia, acting as antistress enzymes in ammonia detoxification and production of Glu for Pro synthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号