首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10648篇
  免费   838篇
  国内免费   4篇
  11490篇
  2024年   5篇
  2023年   61篇
  2022年   173篇
  2021年   263篇
  2020年   152篇
  2019年   206篇
  2018年   254篇
  2017年   234篇
  2016年   327篇
  2015年   558篇
  2014年   604篇
  2013年   782篇
  2012年   979篇
  2011年   893篇
  2010年   596篇
  2009年   510篇
  2008年   667篇
  2007年   723篇
  2006年   663篇
  2005年   545篇
  2004年   547篇
  2003年   446篇
  2002年   432篇
  2001年   74篇
  2000年   61篇
  1999年   80篇
  1998年   94篇
  1997年   73篇
  1996年   58篇
  1995年   59篇
  1994年   30篇
  1993年   51篇
  1992年   34篇
  1991年   35篇
  1990年   19篇
  1989年   15篇
  1988年   15篇
  1987年   8篇
  1986年   14篇
  1985年   18篇
  1984年   17篇
  1983年   13篇
  1982年   17篇
  1981年   10篇
  1980年   11篇
  1979年   9篇
  1977年   9篇
  1976年   7篇
  1975年   5篇
  1974年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
The rat ErbB2 (rErbB2) protein is a 185‐kDa glycoprotein belonging to the epidermal growth factor‐related proteins (ErbB) of receptor tyrosine kinases. Overexpression and mutations of ErbB proteins lead to several malignancies including breast, lung, pancreatic, bladder and ovary carcinomas. ErbB2 is immunogenic and is an ideal candidate for cancer immunotherapy. We investigated the possibility of expressing the extracellular (EC) domain of rErbB2 (653 amino acids, aa) in Nicotiana benthamiana plants, testing the influence of the 23 aa transmembrane (TM) sequence on protein accumulation. Synthetic variants of the rErbB2 gene portion encoding the EC domain, optimized with a human codon usage and either linked to the full TM domain (rErbB2_TM, 676 aa), to a portion of it (rErbB2‐pTM, 662 aa), or deprived of it (rErbB2_noTM, 653 aa) were cloned in the pEAQ‐HT expression vector as 6X His tag fusions. All rErbB2 variants (72–74.5 kDa) were transiently expressed, but the TM was detrimental for rErbB2 EC accumulation. rERbB2_noTM was the most expressed protein; it was solubilized and purified with Nickel affinity resin. When crude soluble extracts expressing rErbB2_noTM were administered to BALB/c mice, specific rErbB2 immune responses were triggered. A potent antitumour activity was induced when vaccinated mice were challenged with syngeneic transplantable ErbB2+ mammary carcinoma cells. To our knowledge, this is the first report of expression of rErbB2 in plants and of its efficacy in inducing a protective antitumour immune response, opening interesting perspectives for further immunological testing.  相似文献   
982.
The swimming behaviour of the green flagellated protist Chlamydomonas reinhardtii is influenced by several different external stimuli including light and chemical attractants. Common components are involved in both the photo- and chemo-sensory transduction pathways, although the nature and organisation of these pathways are poorly understood. To learn more about the mechanism of chemotaxis in Chlamydomonas, we have generated nonchemotactic strains by insertional mutagenesis. The arginine-requiring strain arg7-8 was transformed with DNA carrying the wild-type ARG7 gene. Of the 8630 arginine-independent transformants obtained, five are defective in their chemotaxis towards various sugars. Two of the mutants (CTX2 and CTX3) are blocked only in their response to xylose. Mutant CTX1 is blocked in its response to xylose, maltose and mannitol, but displays normal taxis to sucrose. Mutants CTX4 and CTX5 lack chemotactic responses to all sugars tested. CTX1, CTX4 and CTX5 represent novel chemotactic phenotypes not previously obtained using ultra-violet or chemical mutagenesis. Genetic analysis confirms that each mutation maps to a single nuclear locus that is unlinked to the mating-type locus. Further analysis of CTX4 indicates that the mutant allele is tagged by the transforming ARG7 DNA. CTX4 appears to be defective in a component specific for chemotactic signal transduction since it exhibits wild-type photobehavioural responses (phototaxis and photoshock) as well as the wild-type responses of EGTA-induced trans-flagellum inactivation and acid-induced deflagellation. Insertional mutagenesis has thus permitted the generation of novel chemotactic mutants that will be of value in the molecular dissection of the signalling machinery.  相似文献   
983.
984.
Memory T cells display phenotypic heterogeneity. Surface antigens previously regarded as exclusive markers of naive T cells, such as L-selectin (CD62L), can also be detected on some memory T cells. Moreover, a fraction of CD45RO+ (positive for the short human isoform of CD45) memory T cells reverts to the CD45RA+ (positive for the long human isoform of CD45) phenotype. We analyzed patients with biopsy-proven localized Wegener's granulomatosis (WG) (n = 5), generalized WG (n = 16) and age- and sex-matched healthy controls (n = 13) to further characterize memory T cells in WG. The cell-surface expression of CD45RO, CD45RA, CD62L, CCR3, CCR5 and CXCR3 was determined on blood-derived T cells by four-color flow cytometric analysis. The fractions of CCR5+ and CCR3+ cells within the CD4+CD45RO+ and CD8+CD45RO+ memory T cell populations were significantly expanded in localized and generalized WG. The mean percentage of Th1-type CCR5 expression was higher in localized WG. Upregulated CCR5 and CCR3 expression could also be detected on a fraction of CD45RA+ T cells. CD62L expression was seen on approximately half of the memory T cell populations expressing chemokine receptors. This study demonstrates for the first time that expression of the inducible inflammatory chemokine receptors CCR5 and CCR3 on CD45RO+ memory T cells, as well as on CD45RA+ T cells ('revertants'), contributes to phenotypic heterogeneity in an autoimmune disease, namely WG. Upregulated CCR5 and CCR3 expression suggests that the cells belong to the effector memory T cell population. CCR5 and CCR3 expression on CD4+ and CD8+ memory T cells indicates a potential to respond to chemotactic gradients and might be important in T cell migration contributing to granuloma formation and vasculitis in WG.  相似文献   
985.
986.
The global analysis of metabolism by liquid chromatography coupled to mass spectrometry is often hampered by a large amount of biological and technical variability. Here, we introduce an experimental and analytical strategy that can produce robust metabolome profiles in the face of this challenge. By applying a new computational approach based on concordance analysis to an extremely large number of analytical replicates, we are able to show that the overexpression of an antisense non-coding RNA targeting glutamine synthetase I results in a major reorganization of the metabolism of Streptomyces coelicolor, the model species of antibiotic-producing bacteria. We identified 97 metabolites with statistically significant reproducible dynamic behavior across the time series. The observed metabolic changes are very rapid, specific and widespread across metabolism, but focus on the nitrogen assimilation pathways. Our results demonstrate the power of highly replicated experimental designs for the robust characterization of metabolite dynamics. The identified global rearrangement of metabolism suggests the usefulness of RNA interference as an efficient strategy to manipulate the physiology of bacteria with wider biotechnological applicability in microorganisms.  相似文献   
987.

Background

Various evolutionary models have been proposed to interpret the fate of paralogous duplicates, which provides substrates on which evolution selection could act. In particular, domestication, as a special selection, has played important role in crop cultivation with divergence of many genes controlling important agronomic traits. Recent studies have indicated that a pair of duplicate genes was often sub-functionalized from their ancestral functions held by the parental genes. We previously demonstrated that the rice cell-wall invertase (CWI) gene GIF1 that plays an important role in the grain-filling process was most likely subjected to domestication selection in the promoter region. Here, we report that GIF1 and another CWI gene OsCIN1 constitute a pair of duplicate genes with differentiated expression and function through independent selection.

Results

Through synteny analysis, we show that GIF1 and another cell-wall invertase gene OsCIN1 were paralogues derived from a segmental duplication originated during genome duplication of grasses. Results based on analyses of population genetics and gene phylogenetic tree of 25 cultivars and 25 wild rice sequences demonstrated that OsCIN1 was also artificially selected during rice domestication with a fixed mutation in the coding region, in contrast to GIF1 that was selected in the promoter region. GIF1 and OsCIN1 have evolved into different expression patterns and probable different kinetics parameters of enzymatic activity with the latter displaying less enzymatic activity. Overexpression of GIF1 and OsCIN1 also resulted in different phenotypes, suggesting that OsCIN1 might regulate other unrecognized biological process.

Conclusion

How gene duplication and divergence contribute to genetic novelty and morphological adaptation has been an interesting issue to geneticists and biologists. Our discovery that the duplicated pair of GIF1 and OsCIN1 has experienced sub-functionalization implies that selection could act independently on each duplicate towards different functional specificity, which provides a vivid example for evolution of genetic novelties in a model crop. Our results also further support the established hypothesis that gene duplication with sub-functionalization could be one solution for genetic adaptive conflict.  相似文献   
988.
Experimental evidence suggests that the prokaryotic respiratory cytochrome bd quinol oxidase is responsible for both bioenergetic functions and bacterial adaptation to different stress conditions. The enzyme, phylogenetically unrelated to the extensively studied heme-copper terminal oxidases, is found in many commensal and pathogenic bacteria. Here, we review current knowledge on the catalytic intermediates of cytochrome bd and their reactivity towards nitric oxide (NO). Available information is discussed in the light of the hypothesis that, owing to its high NO dissociation rate, cytochrome bd confers resistance to NO-stress, thereby providing a strategy for bacterial pathogens to evade the NO-mediated host immune attack.  相似文献   
989.
The role of estrogen on male reproductive function has become clearer in the last decade. During these years the study of the effect of testosterone, estrogen or an aromatase inhibitor in hypogonadal men provided a first evidence of the effects of estrogens in the regulation of gonadotropin secretion. At the same time, the development of a line of transgenic male mice lacking estrogen receptor α, estrogen receptor β or aromatase gene provided further evidence about the role of estrogens not only in the regulation of gonadotropin secretion, but also on the effects of estrogens on testicular function and development. A confirmation of these actions of estrogens came from the observation of naturally occurring mutations of the estrogen receptor and of the aromatase gene in human males. Based on these data it has been demonstrated that estrogens are major regulators of gonadotropin secretion acting both at pituitary and hypotalamic level. The presence in the human reproductive structures of estrogen receptor α, estrogen receptor β and the aromatase enzyme indicates the existence of receptor α, estrogen receptor β or aromatase estrogen actions at this level. Anyway, the precise role of estrogens in testicular development and function and on the regulation of human spermatogenesis has not yet been precisely clarified.  相似文献   
990.
Mitochondrial uncoupling protein 2 (UCP2) is highly abundant in rapidly proliferating cells that utilize aerobic glycolysis, such as stem cells, cancer cells, and cells of the immune system. However, the function of UCP2 has been a longstanding conundrum. Considering the strict regulation and unusually short life time of the protein, we propose that UCP2 acts as a “signaling protein” under nutrient shortage in cancer cells. We reveal that glutamine shortage induces the rapid and reversible downregulation of UCP2, decrease of the metabolic activity and proliferation of neuroblastoma cells, that are regulated by glutamine per se but not by glutamine metabolism. Our findings indicate a very rapid (within 1?h) metabolic adaptation that allows the cell to survive by either shifting its metabolism to the use of the alternative fuel glutamine or going into a reversible, more quiescent state. The results imply that UCP2 facilitates glutamine utilization as an energetic fuel source, thereby providing metabolic flexibility during glucose shortage. The targeting UCP2 by drugs to intervene with cancer cell metabolism may represent a new strategy for treatment of cancers resistant to other therapies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号