首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17342篇
  免费   1348篇
  国内免费   5篇
  18695篇
  2023年   83篇
  2022年   245篇
  2021年   400篇
  2020年   235篇
  2019年   355篇
  2018年   435篇
  2017年   370篇
  2016年   559篇
  2015年   852篇
  2014年   985篇
  2013年   1256篇
  2012年   1486篇
  2011年   1386篇
  2010年   909篇
  2009年   760篇
  2008年   1066篇
  2007年   1084篇
  2006年   969篇
  2005年   854篇
  2004年   851篇
  2003年   724篇
  2002年   677篇
  2001年   190篇
  2000年   155篇
  1999年   166篇
  1998年   151篇
  1997年   125篇
  1996年   123篇
  1995年   98篇
  1994年   69篇
  1993年   93篇
  1992年   102篇
  1991年   88篇
  1990年   71篇
  1989年   58篇
  1988年   60篇
  1987年   40篇
  1986年   42篇
  1985年   53篇
  1984年   35篇
  1983年   46篇
  1982年   44篇
  1981年   38篇
  1980年   37篇
  1979年   30篇
  1978年   19篇
  1977年   27篇
  1976年   23篇
  1975年   28篇
  1974年   27篇
排序方式: 共有10000条查询结果,搜索用时 10 毫秒
871.
Plankton seasonal succession is a classic example of nonequilibrium community dynamics. Despite the fact that it has been well studied empirically, it lacks a general quantitative theory. Here we investigate a food web model that includes a resource, two phytoplankton, and a shared grazer-the diamond food web-in a seasonal environment. The model produces a number of successional trajectories that have been widely discussed in the context of the verbal Plankton Ecology Group model of succession, such as a spring bloom of a good competitor followed by a grazer-induced clear-water phase, setting the stage for the late-season dominance of a grazer-resistant species. It also predicts a novel, counterintuitive trajectory where the grazer-resistant species has both early- and late-season blooms. The model often generates regular annual cycles but sometimes produces multiyear cycles or chaos, even with identical forcing each year. Parameterizing the model, we show how the successional trajectory depends on nutrient supply and the length of the growing season, two key parameters that vary among water bodies. This model extends nonequilibrium theory to food webs and is a first step toward a quantitative theory of plankton seasonal succession.  相似文献   
872.
To initiate HIV entry, the HIV envelope protein gp120 must engage its primary receptor CD4 and a coreceptor CCR5 or CXCR4. In the absence of a high resolution structure of a gp120-coreceptor complex, biochemical studies of CCR5 have revealed the importance of its N terminus and second extracellular loop (ECL2) in binding gp120 and mediating viral entry. Using a panel of synthetic CCR5 ECL2-derived peptides, we show that the C-terminal portion of ECL2 (2C, comprising amino acids Cys-178 to Lys-191) inhibit HIV-1 entry of both CCR5- and CXCR4-using isolates at low micromolar concentrations. In functional viral assays, these peptides inhibited HIV-1 entry in a CD4-independent manner. Neutralization assays designed to measure the effects of CCR5 ECL2 peptides when combined with either with the small molecule CD4 mimetic NBD-556, soluble CD4, or the CCR5 N terminus showed additive inhibition for each, indicating that ECL2 binds gp120 at a site distinct from that of N terminus and acts independently of CD4. Using saturation transfer difference NMR, we determined the region of CCR5 ECL2 used for binding gp120, showed that it can bind to gp120 from both R5 and X4 isolates, and demonstrated that the peptide interacts with a CD4-gp120 complex in a similar manner as to gp120 alone. As the CCR5 N terminus-gp120 interactions are dependent on CD4 activation, our data suggest that gp120 has separate binding sites for the CCR5 N terminus and ECL2, the ECL2 binding site is present prior to CD4 engagement, and it is conserved across CCR5- and CXCR4-using strains. These peptides may serve as a starting point for the design of inhibitors with broad spectrum anti-HIV activity.  相似文献   
873.
Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disorders with a complex inheritance pattern. While many rare variants in synaptic proteins have been identified in patients with ASD, little is known about their effects at the synapse and their interactions with other genetic variations. Here, following the discovery of two de novo SHANK2 deletions by the Autism Genome Project, we identified a novel 421 kb de novo SHANK2 deletion in a patient with autism. We then sequenced SHANK2 in 455 patients with ASD and 431 controls and integrated these results with those reported by Berkel et al. 2010 (n = 396 patients and n = 659 controls). We observed a significant enrichment of variants affecting conserved amino acids in 29 of 851 (3.4%) patients and in 16 of 1,090 (1.5%) controls (P = 0.004, OR = 2.37, 95% CI = 1.23–4.70). In neuronal cell cultures, the variants identified in patients were associated with a reduced synaptic density at dendrites compared to the variants only detected in controls (P = 0.0013). Interestingly, the three patients with de novo SHANK2 deletions also carried inherited CNVs at 15q11–q13 previously associated with neuropsychiatric disorders. In two cases, the nicotinic receptor CHRNA7 was duplicated and in one case the synaptic translation repressor CYFIP1 was deleted. These results strengthen the role of synaptic gene dysfunction in ASD but also highlight the presence of putative modifier genes, which is in keeping with the “multiple hit model” for ASD. A better knowledge of these genetic interactions will be necessary to understand the complex inheritance pattern of ASD.  相似文献   
874.
Protein–protein interactions (PPIs) represent an essential aspect of plant systems biology. Identification of key protein players and their interaction networks provide crucial insights into the regulation of plant developmental processes and into interactions of plants with their environment. Despite the great advance in the methods for the discovery and validation of PPIs, still several challenges remain. First, the PPI networks are usually highly dynamic, and the in vivo interactions are often transient and difficult to detect. Therefore, the properties of the PPIs under study need to be considered to select the most suitable technique, because each has its own advantages and limitations. Second, besides knowledge on the interacting partners of a protein of interest, characteristics of the interaction, such as the spatial or temporal dynamics, are highly important. Hence, multiple approaches have to be combined to obtain a comprehensive view on the PPI network present in a cell. Here, we present the progress in commonly used methods to detect and validate PPIs in plants with a special emphasis on the PPI features assessed in each approach and how they were or can be used for the study of plant interactions with their environment.  相似文献   
875.
A major part of histologic studies is the use of high resolution imaging for data collection and analysis. ImageJ, a freely available software from the NIH designed for image analysis, has many features that are not well-known among bone histologists and can be incredibly beneficial in terms of stream-lining data collection and maximizing limited resources. The aims of this technical note are twofold: (a) to describe methods for image annotation and measurement using region of interest overlays in ImageJ, and (b) to present a new code for a semi-automated method of measuring cortical bone areas from high resolution cross-sectional images also using ImageJ.  相似文献   
876.
Topographical modifications of titanium (Ti) at the nanoscale level generate surfaces that regulate several signaling pathways and cellular functions, which may affect the process of osseointegration. Here, we investigated the participation of integrin αV in the osteogenic capacity of Ti with nanotopography. Machined titanium discs (untreated) were submitted to treatment with H2SO4/H2O2 to produce the nanotopography (nanostructured). First, the greater osteogenic capacity of the nanotopography that increased osteoblast differentiation of mesenchymal stem cells compared with untreated topography was shown. Also, the nanostructured surface increased (regulation ≥ 1.9-fold) the gene expression of 6 integrins from a custom array plate utilized to evaluate the gene expression of 84 genes correlated with cell adhesion signaling pathway, including integrin αV, which is involved in osteoblast differentiation. By silencing integrin αV in MC3T3-E1 cells cultured on nanotopography, the impairment of osteoblast differentiation induced by this surface was observed. In conclusion, it was shown that nanotopography regulates the expression of several components of the cell adhesion signaling pathway and its higher osteogenic potential is, at least in part, due to its ability to upregulate the expression of integrin αV. Together with previous data that showed the participation of integrins α1, β1, and β3 in the nanotopography osseoinduction activity, we have uncovered the pivotal role of this family of membrane receptors in the osteogenic potential of this surface.  相似文献   
877.
It is increasingly clear that chloroplasts play a central role in plant stress responses. Upon activation of immune responses, chloroplasts are the source of multiple defensive signals, including reactive oxygen species (ROS). Intriguingly, it has been described that chloroplasts establish physical contact with the nucleus, through clustering around it and extending stromules, following activation of effector-triggered immunity (ETI). However, how prevalent this phenomenon is in plant–pathogen interactions, how its induction occurs, and what the underlying biological significance is are important questions that remain unanswered. Here, we describe that the chloroplast perinuclear clustering seems to be a general plant response upon perception of an invasion threat. Indeed, activation of pattern-triggered immunity, ETI, transient expression of the Rep protein from geminiviruses, or infection with viruses or bacteria all are capable of triggering this response in Nicotiana benthamiana. Interestingly, this response seems non-cell-autonomous, and exogenous treatment with H2O2 is sufficient to elicit this relocalization of chloroplasts, which appears to require accumulation of ROS. Taken together, our results indicate that chloroplasts cluster around the nucleus during plant–pathogen interactions, suggesting a fundamental role of this positioning in plant defence, and identify ROS as sufficient and possibly required for the onset of this response.  相似文献   
878.
The Atacama Desert is the driest non‐polar desert on Earth, presenting precarious conditions for biological activity. In the arid coastal belt, life is restricted to areas with fog events that cause almost daily wet–dry cycles. In such an area, we discovered a hitherto unknown and unique ground covering biocenosis dominated by lichens, fungi, and algae attached to grit‐sized (~6 mm) quartz and granitoid stones. Comparable biocenosis forming a kind of a layer on top of soil and rock surfaces in general is summarized as cryptogamic ground covers (CGC) in literature. In contrast to known CGC from arid environments to which frequent cyclic wetting events are lethal, in the Atacama Desert every fog event is answered by photosynthetic activity of the soil community and thus considered as the desert's breath. Photosynthesis of the new CGC type is activated by the lowest amount of water known for such a community worldwide thus enabling the unique biocenosis to fulfill a variety of ecosystem services. In a considerable portion of the coastal Atacama Desert, it protects the soil from sporadically occurring splash erosion and contributes to the accumulation of soil carbon and nitrogen as well as soil formation through bio‐weathering. The structure and function of the new CGC type are discussed, and we suggest the name grit–crust. We conclude that this type of CGC can be expected in all non‐polar fog deserts of the world and may resemble the cryptogam communities that shaped ancient Earth. It may thus represent a relevant player in current and ancient biogeochemical cycling.  相似文献   
879.
Cancer lethality is mainly caused by metastasis. Therefore, understanding the nature of the genes involved in this process has become a priority. Given the heterogeneity of mutations in cancer cells, considerable focus has been directed toward characterizing metastasis genes in the context of relevant signaling pathways rather than treating genes as independent and equal entities. One signaling cascade implicated in the regulation of cell growth, invasion and metastasis is the MAP kinase pathway. Raf kinase inhibitory protein (RKIP) functions as an inhibitor of the MAP kinase pathway and is a metastasis suppressor in different cancer models. By utilizing statistical analysis of clinical data integrated with experimental validation, we recently identified components of the RKIP signaling pathway relevant to breast cancer metastasis. Using the RKIP pathway as an example, we show how prior biological knowledge can be efficiently combined with genome-wide patient data to identify gene regulatory mechanisms that control metastasis.  相似文献   
880.
A general assumption of quasispecies models of replicons dynamics is that the fitness of a genotype is entirely determined by its sequence. However, a more biologically plausible situation is that fitness depends on the proteins that catalyze metabolic reactions, including replication. In a stirred population of replicons, such as viruses replicating and accumulating within the same cell, the association between a given genome and the proteins it encodes is not tight as it can be replicated by proteins translated from other genomes. We have investigated how this complementation phenomenon affects the error threshold in simple quasispecies mean field models. We first studied a model in which the master and the mutant genomes code for wild-type and mutant replicases, respectively. We assume that the mutant replicase has a reduced activity and that the wild-type replicase does not have increased affinity for the master genome. The whole pool of replicases can bind and replicate both genomes. We then analyze a different model considering a more extreme case of mutant genomes, the defective interfering particles (DIPs) described in many cases of viral infection. DIPs, with a higher replication rate owed to their shorter genomes, do not code for replicase, but they are able of using the replicase translated from the master genome. Our models allow to study how the probability of interaction between the genomes and the whole pool of replicases affects the error threshold. In both systems we characterize the scenario of coexistence between master and mutant genomes, providing the critical values of mutation rate, μc, and the critical interaction rate between master genomes and replicases, γc, at which the quasispecies enters into error catastrophe, a situation in which the mutant genomes dominate the population. In both cases, we showed that the error-threshold transition is given by transcritical-like bifurcations, suggesting a continuous phase transition. We have also found that the region in the parameter space (μ,γ) in which the master sequence survives is reduced when DIPs are introduced into the system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号