首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11080篇
  免费   883篇
  国内免费   3篇
  2023年   51篇
  2022年   108篇
  2021年   269篇
  2020年   156篇
  2019年   219篇
  2018年   260篇
  2017年   244篇
  2016年   342篇
  2015年   592篇
  2014年   644篇
  2013年   828篇
  2012年   1017篇
  2011年   929篇
  2010年   617篇
  2009年   521篇
  2008年   707篇
  2007年   750篇
  2006年   689篇
  2005年   570篇
  2004年   571篇
  2003年   462篇
  2002年   444篇
  2001年   85篇
  2000年   71篇
  1999年   80篇
  1998年   99篇
  1997年   83篇
  1996年   62篇
  1995年   63篇
  1994年   35篇
  1993年   58篇
  1992年   38篇
  1991年   36篇
  1990年   20篇
  1989年   18篇
  1988年   22篇
  1987年   13篇
  1986年   17篇
  1985年   20篇
  1984年   18篇
  1983年   14篇
  1982年   19篇
  1981年   12篇
  1980年   10篇
  1979年   10篇
  1977年   9篇
  1976年   7篇
  1975年   9篇
  1974年   8篇
  1969年   8篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
61.
Reliable prediction of free energy changes upon amino acid substitutions (ΔΔGs) is crucial to investigate their impact on protein stability and protein–protein interaction. Advances in experimental mutational scans allow high-throughput studies thanks to multiplex techniques. On the other hand, genomics initiatives provide a large amount of data on disease-related variants that can benefit from analyses with structure-based methods. Therefore, the computational field should keep the same pace and provide new tools for fast and accurate high-throughput ΔΔG calculations. In this context, the Rosetta modeling suite implements effective approaches to predict folding/unfolding ΔΔGs in a protein monomer upon amino acid substitutions and calculate the changes in binding free energy in protein complexes. However, their application can be challenging to users without extensive experience with Rosetta. Furthermore, Rosetta protocols for ΔΔG prediction are designed considering one variant at a time, making the setup of high-throughput screenings cumbersome. For these reasons, we devised RosettaDDGPrediction, a customizable Python wrapper designed to run free energy calculations on a set of amino acid substitutions using Rosetta protocols with little intervention from the user. Moreover, RosettaDDGPrediction assists with checking completed runs and aggregates raw data for multiple variants, as well as generates publication-ready graphics. We showed the potential of the tool in four case studies, including variants of uncertain significance in childhood cancer, proteins with known experimental unfolding ΔΔGs values, interactions between target proteins and disordered motifs, and phosphomimetics. RosettaDDGPrediction is available, free of charge and under GNU General Public License v3.0, at https://github.com/ELELAB/RosettaDDGPrediction .  相似文献   
62.
The nucleotide sequence (6138 bp) of a microaerobically inducible region (hupV/VI) from the Rhizobium leguminosarum bv. viciae hydrogenase gene cluster has been determined. Six genes, arranged as a single operon, were identified, and designated hypA, B, F, C, D and E based on the sequence similarities of all of them, except hypF, to genes from the hydrogenase pleiotropic operon (hyp) from Escherichia coli. The gene products from hypBFCDE were identified by in vivo expression analysis in E. coli, and their molecular sizes were consistent with those predicted from the nucleotide sequence. Transposon Tn5 insertions into hypB, hypF, hypD and hypE resulted in R. leguminosarum mutants that lacked any hydrogenase activity in symbiosis with peas, but still were able to synthesize the polypeptide for the hydrogenase large subunit. The gene products HypA, HypB, HypF and HypD contained CX2C motifs characteristic of metal-binding proteins. In addition, HypB bore a long histidine-rich stretch of amino acids near the N-terminus, suggesting a possible role in nickel binding for this protein. The gene product HypF, which was translationally coupled to HypB, presented two cysteine motifs (CX2CX81CX2C) with a capacity to form zinc finger-like structures in the N-terminal third of the protein. A role in nickel metabolism in relation to hydrogenase synthesis is postulated for proteins HypB and HypF.  相似文献   
63.
New biomass crop hybrids for bioeconomic expansion require yield projections to determine their potential for strategic land use planning in the face of global challenges. Our biomass growth simulation incorporates radiation interception and conversion efficiency. Models often use leaf area to predict interception which is demanding to determine accurately, so instead we use low-cost rapid light interception measurements using a simple laboratory-made line ceptometer and relate the dynamics of canopy closure to thermal time, and to measurements of biomass. We apply the model to project the European biomass potentials of new market-ready hybrids for 2020–2030. Field measurements are easier to collect, the calibration is seasonally dynamic and reduces influence of weather variation between field sites. The model obtained is conservative, being calibrated by crops of varying establishment and varying maturity on less productive (marginal) land. This results in conservative projections of miscanthus hybrids for 2020–2030 based on 10% land use conversion of the least (productive) grassland and arable for farm diversification, which show a European potential of 80.7–89.7 Mt year−1 biomass, with potential for 1.2–1.3 EJ year−1 energy and 36.3–40.3 Mt year−1 carbon capture, with seeded Miscanthus sacchariflorus × sinensis displaying highest yield potential. Simulated biomass projections must be viewed in light of the field measurements on less productive land with high soil water deficits. We are attempting to model the results from an ambitious and novel project combining new hybrids across Europe with agronomy which has not been perfected on less productive sites. Nevertheless, at the time of energy sourcing issues, seed-propagated miscanthus hybrids for the upscaled provision of bioenergy offer an alternative source of renewable energy. If European countries provide incentives for growers to invest, seeded hybrids can improve product availability and biomass yields over the current commercial miscanthus variety.  相似文献   
64.
Damage to plant communities imposed by insect herbivores generally decreases from low to high latitudes. This decrease is routinely attributed to declines in herbivore abundance and/or diversity, whereas latitudinal changes in per capita food consumption remain virtually unknown. Here, we tested the hypothesis that the lifetime food consumption by a herbivore individual decreases from low to high latitudes due to a temperature-driven decrease in metabolic expenses. From 2016 to 2019, we explored latitudinal changes in multiple characteristics of linear (gallery) mines made by larvae of the pygmy moth, Stigmella lapponica, in leaves of downy birch, Betula pubescens. The mined leaves were larger than intact leaves at the southern end of our latitudinal gradient (at 60°N) but smaller than intact leaves at its northern end (at 69°N), suggesting that female oviposition preference changes with latitude. No latitudinal changes were observed in larval size, mine length or area, and in per capita food consumption, but the larval feeding efficiency (quantified as the ratio between larval size and mine size) increased with latitude. Consequently, S. lapponica larvae consumed less foliar biomass at higher latitudes than at lower latitudes to reach the same size. Based on space-for-time substitution, we suggest that climate warming will increase metabolic expenses of insect herbivores with uncertain consequences for plant–herbivore interactions.  相似文献   
65.
66.
67.
H2–forming N 5,N 10 methylenetetrahydromethanopterin dehydrogenase is a novel type of hydrogenase that contains neither nickel nor iron-sulfur clusters. Evidence has been presented that the reaction mechanism catalyzed by the enzyme is very similar to that of the formation of carbocations and H2 from alkanes under superacidic conditions. We present here further results in support of this mechanism. It was found that the purified enzyme per se did not catalyze the conversion of para H2 to ortho H2, a reaction catalyzed by all other hydrogenases known to date. However, it catalyzed the conversion in the presence of the substrate N 5,N 10 methenyltetrahydromethanopterin (CH≡H4MPT+), indicating that for heterolytic cleavage of H2 the enzyme-CH≡H4MPT+ complex is required. In D2O, the formation of HD and D2 from H2 rather than a paraortho H2 conversion was observed, indicating that after heterolytic cleavage of H2 the dissociation of the proton from the enzyme-substrate complex is fast relative to the re-formation of free H2.  相似文献   
68.
Summary -Chymotrypsin has been modified with poly(ethylene glycols) and proxanols, block-copolymers of poly(propylene oxide) and poly(ethylene oxide). These conjugates were several-fold more thermostable and showed high catalytic activity at elevated concentrations of water-miscible organic cosolvents (alcohols and dimethyl sulfoxide) which caused inactivation of free (non-modified) -chymotrypsin.  相似文献   
69.
The SSR16 gene of Arabidopsis has been identified as a gene encoding a ribosomal protein S16 homolog through analysis of a transposon insertion mutation. The insertion mutation is lethal, arresting embryonic development at approximately the transition from the globular to the heart stage of embryonic development. Co-segregation of the mutant phenotype with the transposon-borne drug-resistance marker and loss of the inserted transposon concomitant with phenotypic reversion provided evidence that the transposon had caused the mutation. Sequences flanking the insertion site were amplified from DNA of viable heterozygotes by thermal asymmetric interlaced (TAIL) PCR. The amplified fragment flanking the 3' end of the inserted element was sequenced and found to be identical to an Arabidopsis expressed sequence tag (EST). The EST, in turn, contained a coding sequence homologous to the ribosomal protein S16 (RPS16) of bacteria such as Escherichia coli, Bacillus subtilis and Salmonella typhimurium , as well as Neurospora crassa mitochondria and higher plant plastids. Thus the gene identified by the embryo-defective lethal insertion mutation encodes an RPS16 homolog and has been designated the SSR16 gene.  相似文献   
70.
Genetic bottlenecks are important events in the genetic diversification of organisms and colonization of new ecological niches. Repeated bottlenecking of RNA viruses often leads to fitness losses due to the operation of Muller's ratchet. Herein we use vesicular stomatitis virus to determine the transmission population size which leads to fitness decreases of virus populations. Remarkably, the effective size of a genetic bottleneck associated with fitness loss is greater when the fitness of the parental population increases. For example, for starting virus populations with low fitness, population transfers of five-clone-to-five-clone passages resulted in a fitness increase. However, when a parental population with high fitness was transferred, 30-clone-to-30-clone passages were required simply to maintain fitness values.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号