首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23743篇
  免费   1867篇
  国内免费   380篇
  2023年   163篇
  2022年   383篇
  2021年   577篇
  2020年   406篇
  2019年   507篇
  2018年   608篇
  2017年   534篇
  2016年   723篇
  2015年   1167篇
  2014年   1266篇
  2013年   1643篇
  2012年   1941篇
  2011年   1758篇
  2010年   1146篇
  2009年   940篇
  2008年   1308篇
  2007年   1359篇
  2006年   1239篇
  2005年   1072篇
  2004年   1039篇
  2003年   934篇
  2002年   846篇
  2001年   405篇
  2000年   388篇
  1999年   367篇
  1998年   227篇
  1997年   172篇
  1996年   142篇
  1995年   126篇
  1994年   129篇
  1993年   116篇
  1992年   197篇
  1991年   181篇
  1990年   157篇
  1989年   171篇
  1988年   139篇
  1987年   120篇
  1986年   123篇
  1985年   129篇
  1984年   93篇
  1983年   89篇
  1982年   68篇
  1981年   57篇
  1979年   71篇
  1977年   90篇
  1976年   59篇
  1975年   55篇
  1974年   70篇
  1973年   53篇
  1969年   48篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Genetic prion diseases are degenerative brain disorders caused by mutations in the gene encoding the prion protein (PrP). Different PrP mutations cause different diseases, including Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker (GSS) syndrome and fatal familial insomnia (FFI). The reason for this variability is not known. It has been suggested that prion strains with unique self-replicating and neurotoxic properties emerge spontaneously in individuals carrying PrP mutations, dictating the phenotypic expression of disease. We generated transgenic mice expressing the FFI mutation, and found that they developed a fatal neurological illness highly reminiscent of FFI, and different from those of similarly generated mice modeling genetic CJD and GSS. Thus transgenic mice recapitulate the phenotypic differences seen in humans. The mutant PrPs expressed in these mice are misfolded but unable to self-replicate. They accumulate in different compartments of the neuronal secretory pathway, impairing the membrane delivery of ion channels essential for neuronal function. Our results indicate that conversion of mutant PrP into an infectious isoform is not required for pathogenesis, and suggest that the phenotypic variability may be due to different effects of mutant PrP on intracellular transport.  相似文献   
992.
993.
The Poland–Fixman–Freire formalism was adapted for modeling of calorimetric DNA melting profiles, and applied to plasmid pBR 322 and long random sequences. We studied the influence of the difference (HGC?HAT) between the helix‐coil transition enthalpies of AT and GC base pairs on the calorimetric melting profile and on normalized calorimetric melting profile. A strong alteration of DNA calorimetrical profile with HGC?HAT was demonstrated. In contrast, there is a relatively slight change in the normalized profiles and in corresponding ordinary (optical) normalized differential melting curves (DMCs). For fixed HGC?HAT, the average relative deviation (S) between DMC and normalized calorimetric profile, and the difference between their melting temperatures (Tcal?Tm) are weakly dependent on peculiarities of the multipeak fine structure of DMCs. At the same time, both the deviation S and difference (Tcal?Tm) enlarge with the temperature melting range of the helix‐coil transition. It is shown that the local deviation between DMC and normalized calorimetric profile increases in regions of narrow peaks distant from the melting temperature.  相似文献   
994.
New, deoxyribonucleic acid (DNA) based compounds, functionalized with hexadecyltrimethylammonium chloride (CTMA) and lanthanide hydroxide nanoparticles were synthesized. The spectral measurements suggest that between the DNA‐CTMA complex and the lanthanide (III) ions a chemical interaction takes place. The obtained materials exhibit an improved fluorescence efficiency, showing a potential interest for application in photonics, and more particularly, in light emitting devices. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 613–617, 2016.  相似文献   
995.
996.
Gene duplications are an important factor in plant evolution, and lineage-specific expanded (LSE) genes are of particular interest. Receptor-like kinases expanded massively in land plants, and leucine-rich repeat receptor-like kinases (LRR-RLK) constitute the largest receptor-like kinases family. Based on the phylogeny of 7,554 LRR-RLK genes from 31 fully sequenced flowering plant genomes, the complex evolutionary dynamics of this family was characterized in depth. We studied the involvement of selection during the expansion of this family among angiosperms. LRR-RLK subgroups harbor extremely contrasting rates of duplication, retention, or loss, and LSE copies are predominantly found in subgroups involved in environmental interactions. Expansion rates also differ significantly depending on the time when rounds of expansion or loss occurred on the angiosperm phylogenetic tree. Finally, using a dN/dS-based test in a phylogenetic framework, we searched for selection footprints on LSE and single-copy LRR-RLK genes. Selective constraint appeared to be globally relaxed at LSE genes, and codons under positive selection were detected in 50% of them. Moreover, the leucine-rich repeat domains, and specifically four amino acids in them, were found to be the main targets of positive selection. Here, we provide an extensive overview of the expansion and evolution of this very large gene family.Receptor-like kinases (RLKs) constitute one of the largest gene families in plants and expanded massively in land plants (Embryophyta; Lehti-Shiu et al., 2009, 2012). For plant RLK gene families, the functions of most members are often not known (especially in recently expanded families), but some described functions include innate immunity (Albert et al., 2010), pathogen response (Dodds and Rathjen, 2010), abiotic stress (Yang et al., 2010), development (De Smet et al., 2009), and sometimes multiple functions (Lehti-Shiu et al., 2012). The RLKs usually consist of three domains: an N-terminal extracellular domain, a transmembrane domain, and a C-terminal kinase domain (KD). In plants, the KD usually has a Ser/Thr specificity (Shiu and Bleecker, 2001), but Tyr-specific RLKs were also described (e.g. BRASSINOSTEROID INSENSITIVE1; Oh et al., 2009). Interestingly, it was estimated that approximately 20% of RLKs contain a catalytically inactive KD (e.g. STRUBBELIG and CORYNE; Chevalier et al., 2005; Castells and Casacuberta, 2007; Gish and Clark, 2011). In Arabidopsis (Arabidopsis thaliana), 44 RLK subgroups (SGs) were defined by inferring the phylogenetic relationships between the KDs (Shiu and Bleecker, 2001). Interestingly, different SGs show different duplication/retention rates (Lehti-Shiu et al., 2009). Specifically, RLKs involved in stress responses show a high number of tandemly duplicated genes whereas those involved in development do not (Shiu et al., 2004), which suggests that some RLK genes are important for the responses of land plants to a changing environment (Lehti-Shiu et al., 2012). There seem to be relatively few RLK pseudogenes compared with other large gene families, and copy retention was argued to be driven by both drift and selection (Zou et al., 2009; Lehti-Shiu et al., 2012). As most SGs are relatively old and RLK subfamilies expanded independently in several plant lineages, duplicate retention cannot be explained by drift alone, and natural selection is expected to be an important driving factor in RLK gene family retention (Lehti-Shiu et al., 2009).Leucine-rich repeat-receptor-like kinases (LRR-RLKs), which contain up to 30 leucine-rich repeat (LRRs) in their extracellular domain, constitute the largest RLK family (Shiu and Bleecker, 2001). Based on the KD, 15 LRR-RLK SGs have been established in Arabidopsis (Shiu et al., 2004; Lehti-Shiu et al., 2009). So far, two major functions have been attributed to them: defense against pathogens and development (Tang et al., 2010b). LRR-RLKs involved in defense are predominantly found in lineage-specific expanded (LSE) gene clusters, whereas LRR-RLKs involved in development are mostly found in nonexpanded groups (Tang et al., 2010b). It was also discovered that the LRR domains are significantly less conserved than the remaining domains of the LRR-RLK genes (Tang et al., 2010b). In addition, a study of four plant genomes (Arabidopsis, grape [Vitis vinifera], poplar [Populus trichocarpa], and rice [Oryza sativa]) showed that LRR-RLK genes from LSE gene clusters show significantly more indications of positive selection or relaxed constraint than LRR-RLKs from nonexpanded groups (Tang et al., 2010b).The genomes of flowering plants (angiosperms) have been shown to be highly dynamic compared with most other groups of land plants (Leitch and Leitch, 2012). This dynamic is mostly caused by the frequent multiplication of genetic material, followed by a complex pattern of differential losses (i.e. the fragmentation process) and chromosomal rearrangements (Langham et al., 2004; Leitch and Leitch, 2012). Most angiosperm genomes sequenced so far show evidence for at least one whole-genome multiplication event during their evolution (Jaillon et al., 2007; D’Hont et al., 2012; Tomato Genome Consortium, 2012). At a smaller scale, tandem and segmental duplications are also very common in angiosperms (Arabidopsis Genome Initiative, 2000; International Rice Genome Sequencing Project, 2005; Rizzon et al., 2006). Although the most common fate of duplicated genes is to be progressively lost, in some cases they can be retained in the genome, and adaptive as well as nonadaptive scenarios have been discussed to play a role in this preservation process (for review, see Moore and Purugganan, 2005; Hahn, 2009; Innan, 2009; Innan and Kondrashov, 2010). Whole-genome sequences also revealed that the same gene may undergo several rounds of duplication and retention. These LSE genes were shown to evolve under positive selection more frequently than single-copy genes in angiosperms (Fischer et al., 2014). That study analyzed general trends over whole genomes. Here, we ask if, and to what extent, this trend is observable at LRR-RLK genes. As this gene family is very dynamic and large, and in accordance with the results of Tang et al. (2010b), we expect the effect of positive selection to be even more pronounced than in the whole-genome average.We analyzed 33 Embryophyta genomes to investigate the evolutionary history of the LRR-RLK gene family in a phylogenetic framework. Twenty LRR-RLK SGs were identified, and from this data set, we deciphered the evolutionary dynamics of this family within angiosperms. The expansion/reduction rates were contrasted between SGs and species as well as in ancestral branches of the angiosperm phylogeny. We then focused on genes whose number increased dramatically in an SG- and/or species-specific manner (i.e. LSE genes). Those genes are likely to be involved in species-specific cellular processes or adaptive interactions and were used as a template to infer the potential occurrence of positive selection. This led to the identification of sites at which positive selection likely acted. We discuss our results in the light of angiosperm genome evolution and current knowledge of LRR-RLK functions. Positive selection footprints identified in LSE genes highlight the importance of combining evolutionary analysis and functional knowledge to guide further investigations.  相似文献   
997.
Lagerstätten, places where soft‐bodied organisms became mineralized, provide a substantial bulk of palaeobiological information, but the detailed mechanisms of how soft‐tissue preservation takes place remain debatable. An experimental taphonomy approach, which allows for direct study of decay and mineralization, offers a means to study the preservational potential of different soft‐bodied organisms under controlled conditions. Here we compare the preservational capacity of two types of clay (kaolinite and montmorillonite) through a long‐term (24 month) experiment involving the burial and decay of small crustaceans. Our experimental design is innovative in that it models catastrophic sedimentation in fine‐grained colloidal suspension, which is believed to form Lagerstätten deposits. We demonstrated better preservation of buried organisms in clays compared to water, and in kaolinite compared to montmorillonite. As aluminium cations were present in high concentrations in kaolinite sediment but not in montmorillonite, the better preservation in kaolinite is attributed to the tanning properties of aluminium, which catalyses cross‐linking in proteins, protecting them from bacterial degradation. Anaerobic environments and acidification also slow down decay, but they are less effective than tanning. Kaolinite and montmorillonite replaced the crustacean integuments differently: in the remains buried in kaolinite, Al and Si were detected in equal proportions, while in those buried in montmorillonite, the Si content appeared to be much higher even in comparison with the initial sample of the clay. These variations probably arose from the different dynamics of acidic hydrolysis in the two clays associated with anaerobic decomposition of organic matter. Our results show that the preservation mechanism includes multi‐component interactions between the solution, mineral, sediment and organic remains; taken separately, any single component explains little. The specific conditions that occur within the colloidal clay sediments can facilitate conservation and start fast mineralization according to chemical properties and elemental content.  相似文献   
998.
Yakovlev  Igor A.  Carneros  Elena  Lee  YeonKyeong  Olsen  Jorunn E.  Fossdal  Carl Gunnar 《Planta》2016,243(5):1237-1249
Planta - A significant number of epigenetic regulators were differentially expressed during embryogenesis at different epitype-inducing conditions. Our results support that methylation of DNA and...  相似文献   
999.
1000.
Aim of this study was to investigate the presence and distribution of Hydraenidae in relation to selected abiotic parameters in a single, uniform riffle of the Caramagna Stream (northwestern Italy). Six species belonging to the genus of Hydraena Kugelann, 1794 were found (H. andreinii D'Orchymont, 1934, H. subimpressa Rey, 1885, H. assimilis Rey, 1885, H. heterogyna Bedel, 1898, H. truncata Rey, 1884 and H. devillei Ganglbauer, 1901), with evident niche preferences. Our study provided interesting information about ecological requirements of minute moss beetles at small-scale and evidenced that maintaining elevate habitat diversity is essential to preserve high species abundance at local scale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号