首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10935篇
  免费   865篇
  国内免费   4篇
  11804篇
  2024年   5篇
  2023年   61篇
  2022年   174篇
  2021年   265篇
  2020年   157篇
  2019年   214篇
  2018年   256篇
  2017年   237篇
  2016年   335篇
  2015年   564篇
  2014年   618篇
  2013年   804篇
  2012年   998篇
  2011年   915篇
  2010年   615篇
  2009年   515篇
  2008年   682篇
  2007年   740篇
  2006年   679篇
  2005年   555篇
  2004年   555篇
  2003年   456篇
  2002年   443篇
  2001年   81篇
  2000年   64篇
  1999年   88篇
  1998年   97篇
  1997年   76篇
  1996年   61篇
  1995年   60篇
  1994年   32篇
  1993年   55篇
  1992年   41篇
  1991年   37篇
  1990年   22篇
  1989年   25篇
  1988年   22篇
  1987年   13篇
  1986年   18篇
  1985年   22篇
  1984年   19篇
  1983年   14篇
  1982年   17篇
  1981年   11篇
  1980年   12篇
  1979年   12篇
  1977年   9篇
  1976年   8篇
  1975年   6篇
  1974年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
361.
This protocol details methods for the isolation of yeast nuclei from budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe), immuno-gold labeling of proteins and visualization by field emission scanning electron microscopy (FESEM). This involves the removal of the yeast cell wall and isolation of the nucleus from within, followed by subsequent processing for high-resolution microscopy. The nuclear isolation step can be performed in two ways: enzymatic treatment of yeast cells to rupture the cell wall and generate spheroplasts (cells that have partially lost their cell wall and their characteristic shape), followed by isolation of the nuclei by centrifugation or homogenization; and whole cell freezing followed by manual cell rupture and centrifugation. This protocol has been optimized for the visualization of the yeast nuclear envelope (NE), nuclear pore complexes (NPCs) and associated cyto-skeletal structures. Samples once processed for FESEM can be stored under vacuum for weeks, allowing considerable time for image acquisition.  相似文献   
362.
The topic of this study is the impact of several pre-analytical and analytical variables on proteomic profiling of human urine by surface enhanced laser desorption/ionization time of flight-mass spectrometry (SELDI-TOF-MS) in healthy subjects. Urine storage at room temperature caused a progressive degradation of proteins, which was prevented by the addition of protease inhibitors only up to 2 h from the collection. The timing of collection over the day had only a minor impact on protein profile, although influencing the intensity of peaks. Repeated freeze/thaw cycles (up to five) did not affect either the number or the intensity of the peaks. A comparison of the protein profile from eight different healthy individuals showed fairly consistent inter-subject similarities, along with between-subject differences, which were markedly dependent on the sex and the type of ProteinChip array used. The addition of a variety of denaturing agents improved the quality of the spectra with all the chips tested (CM10, Q10 and H50), but not with the copper-coated IMAC-30 chip. Finally, SPA matrix allowed to achieve a better performance of SELDI-TOF/MS spectrum, as compared with CHCA, regardless of the ProteinChip array used and even in the low m/z range (2500-10,000). In conclusion, we suggest that a careful choice of a number of pre-analytical and analytical conditions is required to accomplish and define a unifying protocol for the analysis of human urine by SELDI-TOF/MS, in physiological and in pathological states.  相似文献   
363.
A pair ofYersinia enterocolitica serotype O∶3 strains — incubated in growth medium with 10% NaCl and 2 mM glycin betaine at 4 °C, were used to study the plasmid role in the infection of BALB/c mice. The isogenic plasmid-bearing strain, but not its plasmidless derivative, caused enteric infection and histological changes in intestines, stomach and liver of the mice. Two strainsY. enterocolitica andYersinia pseudotuberculosis were incubated at different temperatures (4 and 25 °C) in media, supplemented with different concentrations of NaCl. Two concentrations of betaine as osmoprotector were tested. The initial strains and their substrains were characterised by protein profiles using sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Results show that in salinity conditions, the presence of osmoprotectant (betaine) as well as the temperature of cultivation plays a great role in the expression of some bacterial proteins. The manner in which the different strains answer to the stress situations is specific for each of them.  相似文献   
364.
Short interfering RNA (siRNA) molecules with good gene-silencing properties are needed for drug development based on RNA interference (RNAi). An initial step in RNAi is the activation of the RNA-induced silencing complex RISC, which requires degradation of the sense strand of the siRNA duplex. Although various chemical modifications have been introduced to the antisense strand, modifications to the Argonaute2 (Ago2) cleavage site in the sense strand have, so far, not been described in detail. In this work, novel 2'-F-purine modifications were introduced to siRNAs, and their biological efficacies were tested in cells stably expressing human tartrate-resistant acid phosphatase (TRACP). A validated siRNA that contains both purine and pyrimidine nucleotides at the putative Ago2 cleavage site was chemically modified to contain all possible combinations of 2'-fluorinated 2'-deoxypurines and/or 2'-deoxypyrimidines in the antisense and/or sense strands. The capacity of 2'-F-modified siRNAs to knock down their target mRNA and protein was studied, together with monitoring siRNA toxicity. All 2'-F-modified siRNAs resulted in target knockdown at nanomolar concentrations, despite their high thermal stability. These experiments provide the first evidence that RISC activation not only allows 2'-F modifications at the sense-strand cleavage site, but also increase the biological efficacy of modified siRNAs in vitro.  相似文献   
365.
Zervamicin is a voltage-gated ion-channel-forming peptide. Channels are generally considered to be formed by first insertion of amphipathic molecules into the phospholipid bilayer, followed by self-assembly of a variable number of transmembrane helices. We have studied the length of the peptide structure to address the question whether this peptide is long enough to span the phospholipid bilayer. The pulsed electron-electron double resonance (PELDOR) spectroscopic technique was used to determine the length of the helical molecule in membrane-mimicking solvents. This was achieved from the distance-related dipole-dipole interaction between spin labels, which were located at both ends of the linear peptide chain. The data were obtained by using samples of frozen glassy solutions of MeOH, MeOH/toluene, and MeOH/CHCl(3). Contributions of inter- and intramolecular interactions of spin labels were separated to analyze the intramolecular interaction and the distance distribution function between the labels. It is shown that the main maximum of the distribution functions is located at a distance of ca. 3.3 nm, and this distance appears to be only slightly dependent on the solvent composition. The distribution function was observed to narrow after addition of either CHCl(3) or toluene to MeOH. This effect is rationalized in terms of a decreased mobility of the terminal amino acid residues. By molecular-dynamics simulations, it was shown that the conformation, corresponding with the predominant distance found by PELDOR, agrees well with the mixed alpha/3(10)-helical that was previously determined by NMR. However, in the case toluene was added to the MeOH solution to further increase the hydrophobicity of the environment of the membrane-active peptide, the distribution function gives rise to a minor fraction (7-8%) with a distance of 4.2 nm. This distance corresponds most likely to the more extended 2(7)-helix structure.  相似文献   
366.
Despite increasing evidence of behavioural manipulation of their vectors by pathogens, the underlying mechanisms causing infected vectors to act in ways that benefit pathogen transmission remain enigmatic in most cases. Here, 2-D DIGE coupled with MS were employed to analyse and compare the head proteome of mosquitoes (Anopheles gambiae sensu stricto (Giles)) infected with the malarial parasite (Plasmodium berghei) with that of uninfected mosquitoes. This approach detected altered levels of 12 protein spots in the head of mosquitoes infected with sporozoites. These proteins were subsequently identified using MS and functionally classified as belonging to metabolic, synaptic, molecular chaperone, signalling, and cytoskeletal groups. Our results indicate an altered energy metabolism in the head of sporozoite-infected mosquitoes. Some of the up-/down-regulated proteins identified, such as synapse-associated protein, 14-3-3 protein and calmodulin, have previously been shown to play critical roles in the CNS of both invertebrates and vertebrates. Furthermore, a heat shock response (HSP 20) and a variation of cytoarchitecture (tropomyosins) have been shown. Discovery of these proteins sheds light on potential molecular mechanisms that underlie behavioural modifications and offers new insights into the study of intimate interactions between Plasmodium and its Anopheles vector.  相似文献   
367.
Understanding the mechanisms that help promote protective immune responses to pathogens is a major challenge in biomedical research and an important goal for the design of innovative therapeutic or vaccination strategies. While natural killer (NK) cells can directly contribute to the control of viral replication, whether, and how, they may help orchestrate global antiviral defense is largely unknown. To address this question, we took advantage of the well-defined molecular interactions involved in the recognition of mouse cytomegalovirus (MCMV) by NK cells. By using congenic or mutant mice and wild-type versus genetically engineered viruses, we examined the consequences on antiviral CD8 T cell responses of specific defects in the ability of the NK cells to control MCMV. This system allowed us to demonstrate, to our knowledge for the first time, that NK cells accelerate CD8 T cell responses against a viral infection in vivo. Moreover, we identify the underlying mechanism as the ability of NK cells to limit IFN-alpha/beta production to levels not immunosuppressive to the host. This is achieved through the early control of cytomegalovirus, which dramatically reduces the activation of plasmacytoid dendritic cells (pDCs) for cytokine production, preserves the conventional dendritic cell (cDC) compartment, and accelerates antiviral CD8 T cell responses. Conversely, exogenous IFN-alpha administration in resistant animals ablates cDCs and delays CD8 T cell activation in the face of NK cell control of viral replication. Collectively, our data demonstrate that the ability of NK cells to respond very early to cytomegalovirus infection critically contributes to balance the intensity of other innate immune responses, which dampens early immunopathology and promotes optimal initiation of antiviral CD8 T cell responses. Thus, the extent to which NK cell responses benefit the host goes beyond their direct antiviral effects and extends to the prevention of innate cytokine shock and to the promotion of adaptive immunity.  相似文献   
368.
Diabetes is associated with accelerated atherosclerosis and macrovascular complications are a major cause of morbidity and mortality in this disease. Although our understanding of vascular pathology has lately greatly improved, the mechanism(s) underlying enhanced atherosclerosis in diabetes remain unclear. Endothelial cell dysfunction is emerging as a key component in the pathophysiology of cardiovascular abnormalities associated with diabetes. Although it has been established that endothelium plays a critical role in overall homeostasis of the vessels, vascular smooth muscle cells (vSMC) in the arterial intima have a relevant part in the development of atherosclerosis in diabetes. However, high glucose induced alterations in vSMC behaviour are not fully characterized. Several studies have reported that impaired nitric oxide (NO) synthesis and/or actions are often present in diabetes and endothelial dysfunction. Furthermore, although endothelial cells are by far the main site of vascular NO synthesis, vSMC do express nitric oxyde synthases (NOSs) and NO synthesis in vSMC might be important in vessel's function. Although it is known that vSMC contribute to vascular pathology in diabetes by their change from a quiescent state to an activated proliferative and migratory phenotype (termed phenotypic modulation), whether this altered phenotypic modulation might also involve alterations in the nitrergic systems is still controversial. Our recent data indicate that, in vivo, chronic hyperglycemia might induce an increased number of vSMC proliferative clones which persist in culture and are associated with increased eNOS expression and activity. However, upregulation of eNOS and increased NO synthesis occur in the presence of a marked concomitant increase of O(2-) production. Since NO bioavailabilty might not be increased in high glucose stimulated vSMC, it is tempting to hypothesize that the proliferative phenotype observed in cells from diabetic rats is associated with a redox imbalance responsible quenching and/or trapping of NO, with the consequent loss of its biological activity. This might provide new insight on the mechanisms responsible for accelerated atherosclerosis in diabetes.  相似文献   
369.
Gene expression in Xenopus laevis embryos after Triadimefon exposure   总被引:1,自引:0,他引:1  
The triazole derivative Triadimefon (FON) is a systemic fungicide used to control powdery mildews, rusts, and other fungal pests. Some data have already been published about the teratogenic activity of this compound: craniofacial malformations were found in mouse, rat, and Xenopus laevis embryos exposed to FON. These alterations were correlated to defective branchial arch development possibly caused by abnormal neural crest cell (NCC) migration into the branchial mesenchyme. As the migration of NCCs is controlled by the HOX code and by an anteroposterior retinoic acid (RA) gradient, we analyzed the expression of CYP26, a key enzyme in RA metabolism, following FON exposure. The increased expression of this gene and the ability of citral (a RA inhibitor) to reduce the teratogenic effects of the fungicide support the notion that endogenous RA is involved in the mechanism of action of FON. Moreover, by in situ hybridization, we studied the effects of FON exposure at gastrula stage on the expression of some genes involved in craniofacial development, hindbrain patterning, and NCC migration. We observed abnormal localization of xCRABP, Hoxa2 and Xbap signal expression at the level of migrating NCC domains, whereas in the hindbrain, we did not find any alteration in Krox20 and Hoxa2 expression.  相似文献   
370.
In the hierarchy of cellular targets damaged by ionizing radiation (IR), classical models of radiation toxicity place DNA at the top. Yet, many prokaryotes are killed by doses of IR that cause little DNA damage. Here we have probed the nature of Mn-facilitated IR resistance in Deinococcus radiodurans, which together with other extremely IR-resistant bacteria have high intracellular Mn/Fe concentration ratios compared to IR-sensitive bacteria. For in vitro and in vivo irradiation, we demonstrate a mechanistic link between Mn(II) ions and protection of proteins from oxidative modifications that introduce carbonyl groups. Conditions that inhibited Mn accumulation or Mn redox cycling rendered D. radiodurans radiation sensitive and highly susceptible to protein oxidation. X-ray fluorescence microprobe analysis showed that Mn is globally distributed in D. radiodurans, but Fe is sequestered in a region between dividing cells. For a group of phylogenetically diverse IR-resistant and IR-sensitive wild-type bacteria, our findings support the idea that the degree of resistance is determined by the level of oxidative protein damage caused during irradiation. We present the case that protein, rather than DNA, is the principal target of the biological action of IR in sensitive bacteria, and extreme resistance in Mn-accumulating bacteria is based on protein protection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号