首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10892篇
  免费   865篇
  国内免费   4篇
  2023年   51篇
  2022年   145篇
  2021年   265篇
  2020年   157篇
  2019年   214篇
  2018年   256篇
  2017年   237篇
  2016年   335篇
  2015年   564篇
  2014年   618篇
  2013年   804篇
  2012年   998篇
  2011年   915篇
  2010年   615篇
  2009年   515篇
  2008年   682篇
  2007年   740篇
  2006年   679篇
  2005年   555篇
  2004年   555篇
  2003年   456篇
  2002年   443篇
  2001年   81篇
  2000年   64篇
  1999年   88篇
  1998年   97篇
  1997年   76篇
  1996年   61篇
  1995年   60篇
  1994年   32篇
  1993年   55篇
  1992年   41篇
  1991年   37篇
  1990年   22篇
  1989年   25篇
  1988年   22篇
  1987年   13篇
  1986年   18篇
  1985年   22篇
  1984年   19篇
  1983年   14篇
  1982年   17篇
  1981年   11篇
  1980年   12篇
  1979年   12篇
  1977年   9篇
  1976年   8篇
  1975年   6篇
  1974年   8篇
  1969年   4篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
241.
242.
We studied the growth of the araphid pennate diatom Synedra acus subsp. radians (Kützing) Skabichevskii using a fluorescent dye N 1,N 3-dimethyl-N 1-(7-nitro-2,1,3-benzoxadiazol-4-yl)propane-1,3-diamine (NBD-N2), which stains growing siliceous frustules but does not stain other subcellular organelles. We used a clonal culture of S. acus that was synchronized by silicon starvation. Epifluorescence microscopy was performed in two different ways with cells stained by the addition of silicic acid and the dye. Individual cells immobilized on glass were observed during the first 15–20 min following the replenishment of silicic acid after silicon starvation. Alternatively, we examined cells of a batch culture at time intervals during 36 h after the replenishment of silicic acid using fluorescence and confocal microscopy. The addition of silicic acid and NBD-N2 resulted in the rapid (1–2 min) formation of several dozen green fluorescent submicrometer particles (GFSPs) in the cytoplasm, which was accompanied by the accumulation of fluorescent silica inside silica deposition vesicles (SDVs) along their full length. In 5–15 min, GFSPs disappeared from the cytoplasm. Mature siliceous valves were formed within the SDVs during the subsequent 14–16 h. In the next 8–10 h, GFSPs appeared again in the cytoplasm of daughter cells. The data obtained confirm observations about the two-stage mechanism of silicon assimilation, which includes rapid silicon uptake (surge uptake) followed by slow silica deposition. It is likely that the observed GFSPs are silicon transport vesicles, which were first proposed by Schmid and Schulz in (Protoplasma 100:267–288, 1979).  相似文献   
243.
Phospholipase D (PLD) and its product phosphatidic acid (PA) are incorporated in a complex metabolic network in which the individual PLD isoforms are suggested to regulate specific developmental and stress responses, including plant programmed cell death (PCD). Despite the accumulating knowledge, the mechanisms through which PLD/PA operate during PCD are still poorly understood. In this work, the role of PLDα1 in PCD and the associated caspase-like proteolysis, ethylene and hydrogen peroxide (H2O2) synthesis in tomato suspension cells was studied. Wild-type (WT) and PLDα1-silenced cell lines were exposed to the cell death-inducing chemicals camptothecin (CPT), fumonisin B1 (FB1) and CdSO4. A range of caspase inhibitors effectively suppressed CPT-induced PCD in WT cells, but failed to alleviate cell death in PLDα1-deficient cells. Compared to WT, in CPT-treated PLDα1 mutant cells, reduced cell death and decreased production of H2O2 were observed. Application of ethylene significantly enhanced CPT-induced cell death both in WT and PLDα1 mutants. Treatments with the PA derivative lyso-phosphatidic acid and mastoparan (agonist of PLD/PLC signalling downstream of G proteins) caused severe cell death. Inhibitors, specific to PLD and PLC, remarkably decreased the chemical-induced cell death. Taken together with our previous findings, the results suggest that PLDα1 contributes to caspase-like-dependent cell death possibly communicated through PA, reactive oxygen species and ethylene. The dead cells expressed morphological features of PCD such as protoplast shrinkage and nucleus compaction. The presented findings reveal novel elements of PLD/PA-mediated cell death response and suggest that PLDα1 is an important factor in chemical-induced PCD signal transduction.  相似文献   
244.
In most retroviruses, plasma membrane (PM) association of the Gag structural protein is a critical step in viral assembly, relying in part on interaction between the highly basic Gag MA domain and the negatively charged inner leaflet of the PM. Assembly is thought to begin with Gag dimerization followed by multimerization, resulting in a hexameric lattice. To directly address the role of multimerization in membrane binding, we fused the MA domains of Rous sarcoma virus (RSV) and HIV-1 to the chemically inducible dimerization domain FK506-binding protein (FKBP) or to the hexameric protein CcmK4 from cyanobacteria. The cellular localization of the resulting green fluorescent protein (GFP)-tagged chimeric proteins was examined by fluorescence imaging, and the association of the proteins with liposomes was quantified by flotation in sucrose gradients, following synthesis in a reticulocyte extract or as purified proteins. Four lipid compositions were tested, representative of liposomes commonly reported in flotation experiments. By themselves, GFP-tagged RSV and HIV-1 MA proteins were largely cytoplasmic, but both hexamerized proteins were highly concentrated at the PM. Dimerization led to partial PM localization for HIV-1 MA. These in vivo effects of multimerization were reproduced in vitro. In flotation analyses, the intact RSV and HIV-1 Gag proteins were more similar to multimerized MA than to monomeric MA. RNA is reported to compete with acidic liposomes for HIV-1 Gag binding, and thus we also examined the effects of RNase treatment or tRNA addition on flotation. tRNA competed with liposomes in the case of some but not all lipid compositions and ionic strengths. Taken together, our results further underpin the model that multimerization is critical for PM association of retroviral Gag proteins. In addition, they suggest that the modulation of membrane binding by RNA, as previously reported for HIV-1, may not hold for RSV.  相似文献   
245.
The influenza virus nonstructural protein 1 (NS1) inhibits innate immunity by multiple mechanisms. We previously reported that NS1 is able to inhibit the production of type I interferon (IFN) and proinflammatory cytokines in human primary dendritic cells (DCs). Here, we used recombinant viruses expressing mutant NS1 from the A/Texas/36/91 and A/Puerto Rico/08/34 strains in order to analyze the contribution of different NS1 domains to its antagonist functions. We show that the polyadenylation stimulating factor 30 (CPSF30) binding function of the NS1 protein from A/Texas/36/91 influenza virus, which is absent in the A/Puerto Rico/08/34 strain, is essential for counteracting these innate immune events in DCs. However, the double-stranded RNA (dsRNA) binding domain, present in both strains, specifically inhibits the induction of type I IFN genes in infected DCs, while it is essential only for inhibition of type I IFN proteins and proinflammatory cytokine production in cells infected with influenza viruses lacking a functional CPSF30 binding domain, such as A/Puerto Rico/08/34.  相似文献   
246.
Residues Arg283, Arg285, and Ile287 are highly conserved amino acids in bovine viral diarrhea virus RNA polymerase (BVDV RdRp) and RdRps from related positive-strand RNA viruses. This motif is an important part of the binding pocket for the nascent RNA base pair during initiation and elongation. We found that replacement of the arginines with alanines or more conserved lysines or replacement of isoleucine with alanine or valine alters the ability of the mutant RdRps to incorporate ribonucleotides efficiently. The reduced RdRp activity stems from both decreased ribonucleotide binding and decreased catalytic efficiency in both primer-dependent and de novo initiation, as shown by kinetic studies. In line with other studies on flaviviral RdRps, our data suggest that Arg283 and Ile287 may be implicated in ribonucleotide binding and positioning of the template base in the active site. Arg285 appears to be involved directly in the selection of cognate nucleotide. The findings for Arg285 and Ile287 mutants also agree with similar data from picornavirus RdRps.  相似文献   
247.
Replication-competent poxvirus vectors with an attenuation phenotype and with a high immunogenic capacity of the foreign expressed antigen are being pursued as novel vaccine vectors against different pathogens. In this investigation, we have examined the replication and immunogenic characteristics of two vaccinia virus (VACV) mutants, M65 and M101. These mutants were generated after 65 and 101 serial passages of persistently infected Friend erythroleukemia (FEL) cells. In cultured cells of different origins, the mutants are replication competent and have growth kinetics similar to or slightly reduced in comparison with those of the parental Western Reserve (WR) virus strain. In normal and immune-suppressed infected mice, the mutants showed different levels of attenuation and pathogenicity in comparison with WR and modified vaccinia Ankara (MVA) strains. Wide genome analysis after deep sequencing revealed selected genomic deletions and mutations in a number of viral open reading frames (ORFs). Mice immunized in a DNA prime/mutant boost regimen with viral vectors expressing the LACK (Leishmania homologue for receptors of activated C kinase) antigen of Leishmania infantum showed protection or a delay in the onset of cutaneous leishmaniasis. Protection was similar to that triggered by MVA-LACK. In immunized mice, both polyfunctional CD4+ and CD8+ T cells with an effector memory phenotype were activated by the two mutants, but the DNA-LACK/M65-LACK protocol preferentially induced CD4+ whereas DNA-LACK/M101-LACK preferentially induced CD8+ T cell responses. Altogether, our findings showed the adaptive changes of the WR genome during long-term virus-host cell interaction and how the replication competency of M65 and M101 mutants confers distinct biological properties and immunogenicity in mice compared to those of the MVA strain. These mutants could have applicability for understanding VACV biology and as potential vaccine vectors against pathogens and tumors.  相似文献   
248.
APOBEC3G has an important role in human defense against retroviral pathogens, including HIV-1. Its single-stranded DNA cytosine deaminase activity, located in its C-terminal domain (A3Gctd), can mutate viral cDNA and restrict infectivity. We used time-resolved nuclear magnetic resonance (NMR) spectroscopy to determine kinetic parameters of A3Gctd''s deamination reactions within a 5′-CCC hot spot sequence. A3Gctd exhibited a 45-fold preference for 5′-CCC substrate over 5′-CCU substrate, which explains why A3G displays almost no processivity within a 5′-CCC motif. In addition, A3Gctd''s shortest substrate sequence was found to be a pentanucleotide containing 5′-CCC flanked on both sides by a single nucleotide. A3Gctd as well as full-length A3G showed peak deamination velocities at pH 5.5. We found that H216 is responsible for this pH dependence, suggesting that protonation of H216 could play a key role in substrate binding. Protonation of H216 appeared important for HIV-1 restriction activity as well, since substitutions of H216 resulted in lower restriction in vivo.  相似文献   
249.
The effects of tensile stress and temperature on cell wall elasticity have been investigated in the outer cell walls of coleoptile epidermis of 4- and 6-day-old Zea mays L. seedlings. The change in tensile stress from 6 to 40 MPa caused the increase in cell wall elastic modulus from 0.4 to 3 GPa. Lowering the temperature from 30 to 4 °C resulted in instantaneous and reversible cell wall elongation of 0.3–0.5 ‰. At a given temperature and stress level, the wall elastic modulus of 6-day-old seedlings tended to be 30 % higher than that of 4-day-old plants. The relationship between cell wall elasticity and mechanical stress indicated that the stress distribution within the cell wall is highly uneven. The analysis of the effect of temperature on cell wall elastic strain showed that structural differences between crystalline and amorphous load-bearing polymers were not the only cause of the uneven stress distribution. Based on the results obtained by Hejnowicz and Borowska-Wykr?t (Planta 220:465–473, 2005), we suggested that the uneven stress distribution is partially related to the stress gradient between inner and outer layers of the cell wall.  相似文献   
250.
Outer membrane vesicles (OMVs) from Gram-negative bacteria are known to be involved in lateral DNA transfer, but the presence of DNA in these vesicles has remained difficult to explain. An ultrastructural study of the Antarctic psychrotolerant bacterium Shewanella vesiculosa M7T has revealed that this Gram-negative bacterium naturally releases conventional one-bilayer OMVs through a process in which the outer membrane is exfoliated and only the periplasm is entrapped, together with a more complex type of OMV, previously undescribed, which on formation drag along inner membrane and cytoplasmic content and can therefore also entrap DNA. These vesicles, with a double-bilayer structure and containing electron-dense material, were visualized by transmission electron microscopy (TEM) after high-pressure freezing and freeze-substitution (HPF-FS), and their DNA content was fluorometrically quantified as 1.8 ± 0.24 ng DNA/μg OMV protein. The new double-bilayer OMVs were estimated by cryo-TEM to represent 0.1% of total vesicles. The presence of DNA inside the vesicles was confirmed by gold DNA immunolabeling with a specific monoclonal IgM against double-stranded DNA. In addition, a proteomic study of purified membrane vesicles confirmed the presence of plasma membrane and cytoplasmic proteins in OMVs from this strain. Our data demonstrate the existence of a previously unobserved type of double-bilayer OMV in the Gram-negative bacterium Shewanella vesiculosa M7T that can incorporate DNA, for which we propose the name outer-inner membrane vesicle (O-IMV).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号