首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10721篇
  免费   840篇
  国内免费   4篇
  11565篇
  2024年   5篇
  2023年   60篇
  2022年   174篇
  2021年   264篇
  2020年   152篇
  2019年   209篇
  2018年   256篇
  2017年   236篇
  2016年   326篇
  2015年   557篇
  2014年   605篇
  2013年   786篇
  2012年   987篇
  2011年   899篇
  2010年   601篇
  2009年   512篇
  2008年   672篇
  2007年   726篇
  2006年   680篇
  2005年   551篇
  2004年   548篇
  2003年   451篇
  2002年   440篇
  2001年   76篇
  2000年   59篇
  1999年   82篇
  1998年   93篇
  1997年   75篇
  1996年   60篇
  1995年   59篇
  1994年   31篇
  1993年   51篇
  1992年   32篇
  1991年   33篇
  1990年   19篇
  1989年   15篇
  1988年   15篇
  1987年   7篇
  1986年   11篇
  1985年   19篇
  1984年   18篇
  1983年   13篇
  1982年   17篇
  1981年   10篇
  1980年   10篇
  1979年   9篇
  1977年   9篇
  1976年   7篇
  1975年   5篇
  1974年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The current report describes the use of CapLC-ESI-Q/TOF-MS for investigating the proteome profiles of hypertonic saline-induced sputum samples from 56 smokers. The severity of their lung disease ranged from normal (healthy smokers) to chronic bronchitis, chronic obstructive pulmonary disease (COPD), and COPD with emphysema. This pilot study examined the hypothesis that there were distinct differences in protein expression profiles that were related to the phenotype and cigarette smoking illness severity. A total of 203 unique proteins were identified. These may represent the most highly expressed proteins in induced sputum. Our results provide evidence that different proteins are expressed, as the disease progresses from health to more advanced stages, and support our contention that a proteomic approach would be beneficial in discovering selective molecules linked to specific COPD stages.  相似文献   
992.
Imatinib is the first molecular targeted therapy that has shown clinical success, but imatinib acquired resistance, although a rare event, is critical during the therapy of chronic myelogenous leukaemia (CML). With the aim of better understanding the molecular mechanisms accompanying acquisition of resistance to this drug, a comparative proteomic approach was undertaken on CML cell lines LAMA 84 S (imatinib sensitive) and LAMA 84 R (imatinib resistant). Forty-four differentially expressed proteins were identified and categorized into five main functional classes: (I) heat shock proteins and chaperones; (II) nucleic acid interacting proteins (binding/synthesis/stability); (III) structural proteins, (IV) cell signaling, and (V) metabolic enzymes. Several heat shock proteins known to complex Bcr-Abl were overexpressed in imatinib resistant cells, showing a possible involvement of these proteins in the mechanism of resistance. HnRNPs also resulted in being up-regulated in imatinib resistant cells. These proteins have been shown to be strongly and directly related to Bcr-Abl activity. To our knowledge, this is the first direct proteomic comparison of imatinib sensitive/resistant CML cell lines.  相似文献   
993.
Biochemistry (Moscow) - Due to the unique capability of modulating cell membrane potential upon photoactivation, channelrhodopsins of green (Chlorophyta) and cryptophytic (Cryptophyta) algae are...  相似文献   
994.
Biochemistry (Moscow) - The Complex II family encompasses membrane bound succinate:quinones reductases and quinol:fumarate reductases that catalyze interconversion of succinate and fumarate coupled...  相似文献   
995.
996.
Biodiversity and Conservation - The monk seal is the most endangered pinniped worldwide and the only one found in the Mediterranean, where its distribution and abundance have suffered a drastic...  相似文献   
997.
998.
The diverse roles of protein kinase C-δ (PKCδ) in cellular growth, survival, and injury have been attributed to stimulus-specific differences in PKCδ signaling responses. PKCδ exerts membrane-delimited actions in cells activated by agonists that stimulate phosphoinositide hydrolysis. PKCδ is released from membranes as a Tyr313-phosphorylated enzyme that displays a high level of lipid-independent activity and altered substrate specificity during oxidative stress. This study identifies an interaction between PKCδ''s Tyr313-phosphorylated hinge region and its phosphotyrosine-binding C2 domain that controls PKCδ''s enzymology indirectly by decreasing phosphorylation in the kinase domain ATP-positioning loop at Ser359. We show that wild-type (WT) PKCδ displays a strong preference for substrates with serine as the phosphoacceptor residue at the active site when it harbors phosphomimetic or bulky substitutions at Ser359. In contrast, PKCδ-S359A displays lipid-independent activity toward substrates with either a serine or threonine as the phosphoacceptor residue. Additional studies in cardiomyocytes show that oxidative stress decreases Ser359 phosphorylation on native PKCδ and that PKCδ-S359A overexpression increases basal levels of phosphorylation on substrates with both phosphoacceptor site serine and threonine residues. Collectively, these studies identify a C2 domain-pTyr313 docking interaction that controls ATP-positioning loop phosphorylation as a novel, dynamically regulated, and physiologically relevant structural determinant of PKCδ catalytic activity.  相似文献   
999.
Stabilization of the ribosomal complexes plays an important role in translational control. Mechanisms of ribosome stabilization have been studied in detail for initiation and elongation of eukaryotic translation, but almost nothing is known about stabilization of eukaryotic termination ribosomal complexes. Here, we present one of the mechanisms of fine-tuning of the translation termination process in eukaryotes. We show that certain deacylated tRNAs, remaining in the E site of the ribosome at the end of the elongation cycle, increase the stability of the termination and posttermination complexes. Moreover, only the part of eRF1 recognizing the stop codon is stabilized in the A site of the ribosome, and the stabilization is not dependent on the hydrolysis of peptidyl-tRNA. The determinants, defining this property of the tRNA, reside in the acceptor stem. It was demonstrated by site-directed mutagenesis of tRNAVal and construction of a mini-helix structure identical to the acceptor stem of tRNA. The mechanism of this stabilization is different from the fixation of the unrotated state of the ribosome by CCA end of tRNA or by cycloheximide in the E site. Our data allow to reveal the possible functions of the isodecoder tRNAs in eukaryotes.  相似文献   
1000.
The amidohydrolase superfamily has remarkable functional diversity, with considerable structural and functional annotation of known sequences. In microbes, the recent evolution of several members of this family to catalyze the breakdown of environmental xenobiotics is not well understood. An evolutionary transition from binuclear to mononuclear metal ion coordination at the active sites of these enzymes could produce large functional changes such as those observed in nature, but there are few clear examples available to support this hypothesis. To investigate the role of binuclear-mononuclear active-site transitions in the evolution of new function in this superfamily, we have characterized two recently evolved enzymes that catalyze the hydrolysis of the synthetic herbicides molinate (MolA) and phenylurea (PuhB). In this work, the crystal structures, mutagenesis, metal ion analysis, and enzyme kinetics of both MolA and PuhB establish that these enzymes utilize a mononuclear active site. However, bioinformatics and structural comparisons reveal that the closest putative ancestor of these enzymes had a binuclear active site, indicating that a binuclear-mononuclear transition has occurred. These proteins may represent examples of evolution modifying the characteristics of existing catalysts to satisfy new requirements, specifically, metal ion rearrangement leading to large leaps in activity that would not otherwise be possible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号