首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   12篇
  2021年   2篇
  2020年   2篇
  2018年   1篇
  2017年   1篇
  2014年   2篇
  2013年   1篇
  2012年   5篇
  2011年   1篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   4篇
  2006年   3篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1979年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
  1961年   1篇
  1960年   1篇
  1935年   2篇
  1933年   1篇
排序方式: 共有55条查询结果,搜索用时 15 毫秒
21.
Plant carotenoids play essential roles in photosynthesis, photoprotection, and as precursors to apocarotenoids. The plastid-localized carotenoid biosynthetic pathway is mediated by well-defined nucleus-encoded enzymes. However, there is a major gap in understanding the nature of protein interactions and pathway complexes needed to mediate carotenogenesis. In this study, we focused on carotene ring hydroxylation, which is performed by two structurally distinct classes of enzymes, the P450 CYP97A and CYP97C hydroxylases and the nonheme diiron HYD enzymes. The CYP97A and HYD enzymes both function in the hydroxylation of β-rings in carotenes, but we show that they are not functionally interchangeable. The formation of lutein, which involves hydroxylation of both β- and ε-rings, was shown to require the coexpression of CYP97A and CYP97C enzymes. These enzymes were also demonstrated to interact in vivo and in vitro, as determined using bimolecular fluorescence complementation and a pull-down assay, respectively. We discuss the role of specific hydroxylase enzyme interactions in promoting pathway flux and preventing the formation of pathway dead ends. These findings will facilitate efforts to manipulate carotenoid content and composition for improving plant adaptation to climate change and/or for enhancing nutritionally important carotenoids in food crops.  相似文献   
22.
23.
24.
Seibert E  Ross JB  Osman R 《Biochemistry》2002,41(36):10976-10984
Uracil DNA glycosylase (UDG) is a base excision repair enzyme that specifically recognizes and removes uracil from double- or single-stranded DNA. The efficiency of the enzyme depends on the DNA sequence surrounding the uracil. Crystal structures of UDG in complex with DNA reveal that the DNA is severely bent and distorted in the region of the uracil. This suggests that the sequence-dependent efficiency of the enzyme may be related to the energetic cost of DNA distortion in the process of specific damage recognition. To test this hypothesis, molecular dynamics simulations were performed on two sequences representing extreme cases of UDG efficiency, AUA/TAT (high efficiency) and GUG/CAC (low efficiency). Analysis of the simulations shows that the effective bending force constants are lower for the AUA/TAT sequence, indicating that this sequence is more flexible than the GUG/CAC sequence. Fluorescence lifetimes of the adenine analogue 2-aminopurine (2AP), replacing adenine opposite the uracil, are shorter in the context of the AUA/TAT sequence, indicating more dynamic base-base interaction and greater local flexibility than in the GUG/CAC sequence. Furthermore, the K(M) of Escherichia coli UDG for the AUA/TAT sequence is 10-fold smaller than that for the GUG/CAC sequence, while the k(cat) is only 2-fold smaller. This indicates that differences in UDG efficiency largely arise from differences in binding and not catalysis. These results link directly flexibility near the damaged DNA site with the efficiency of DNA repair.  相似文献   
25.
26.
Carotenoids and their derivatives are essential for growth, development, and signaling in plants and have an added benefit as nutraceuticals in food crops. Despite the importance of the biosynthetic pathway, there remain open questions regarding some of the later enzymes in the pathway. The CYP97 family of P450 enzymes was predicted to function in carotene ring hydroxylation, to convert provitamin A carotenes to non-provitamin A xanthophylls. However, substrate specificity was difficult to investigate directly in plants, which mask enzyme activities by a complex and dynamic metabolic network. To characterize the enzymes more directly, we amplified cDNAs from a model crop, Oryza sativa, and used functional complementation in Escherichia coli to test activity and specificity of members of Clans A and C. This heterologous system will be valuable for further study of enzyme interactions and substrate utilization needed to understand better the role of CYP97 hydroxylases in plant carotenoid biosynthesis.  相似文献   
27.
Li F  Murillo C  Wurtzel ET 《Plant physiology》2007,144(2):1181-1189
Carotenoids are a diverse group of pigments found in plants, fungi, and bacteria. They serve essential functions in plants and provide health benefits for humans and animals. In plants, it was thought that conversion of the C40 carotenoid backbone, 15-cis-phytoene, to all-trans-lycopene, the geometrical isomer required by downstream enzymes, required two desaturases (phytoene desaturase and zeta-carotene desaturase [ZDS]) plus a carotene isomerase (CRTISO), in addition to light-mediated photoisomerization of the 15-cis-double bond; bacteria employ only a single enzyme, CRTI. Characterization of the maize (Zea mays) pale yellow9 (y9) locus has brought to light a new isomerase required in plant carotenoid biosynthesis. We report that maize Y9 encodes a factor required for isomerase activity upstream of CRTISO, which we term Z-ISO, an activity that catalyzes the cis- to trans-conversion of the 15-cis-bond in 9,15,9'-tri-cis-zeta-carotene, the product of phytoene desaturase, to form 9,9'-di-cis-zeta-carotene, the substrate of ZDS. We show that recessive y9 alleles condition accumulation of 9,15,9'-tri-cis-zeta-carotene in dark tissues, such as roots and etiolated leaves, in contrast to accumulation of 9,9'-di-cis-zeta-carotene in a ZDS mutant, viviparous9. We also identify a locus in Euglena gracilis, which is similarly required for Z-ISO activity. These data, taken together with the geometrical isomer substrate requirement of ZDS in evolutionarily distant plants, suggest that Z-ISO activity is not unique to maize, but will be found in all higher plants. Further analysis of this new gene-controlled step is critical to understanding regulation of this essential biosynthetic pathway.  相似文献   
28.
Monarch butterflies are best known for their spectacular annual migration from eastern North America to Mexico. Monarchs also occur in the North American states west of the Rocky Mountains, from where they fly shorter distances to the California Coast. Whether eastern and western North American monarchs form one genetic population or are genetically differentiated remains hotly debated, and resolution of this debate is essential to understand monarch migration patterns and to protect this iconic insect species. We studied the genetic structure of North American migratory monarch populations, as well as nonmigratory populations in Hawaii and New Zealand. Our results show that eastern and western migratory monarchs form one admixed population and that monarchs from Hawaii and New Zealand have genetically diverged from North American butterflies. These findings suggest that eastern and western monarch butterflies maintain their divergent migrations despite genetic mixing. The finding that eastern and western monarchs form one genetic population also suggests that the conservation of overwintering sites in Mexico is crucial for the protection of monarchs in both eastern and western North America.  相似文献   
29.

Background

Multiple pathway databases are available that describe the human metabolic network and have proven their usefulness in many applications, ranging from the analysis and interpretation of high-throughput data to their use as a reference repository. However, so far the various human metabolic networks described by these databases have not been systematically compared and contrasted, nor has the extent to which they differ been quantified. For a researcher using these databases for particular analyses of human metabolism, it is crucial to know the extent of the differences in content and their underlying causes. Moreover, the outcomes of such a comparison are important for ongoing integration efforts.

Results

We compared the genes, EC numbers and reactions of five frequently used human metabolic pathway databases. The overlap is surprisingly low, especially on reaction level, where the databases agree on 3% of the 6968 reactions they have combined. Even for the well-established tricarboxylic acid cycle the databases agree on only 5 out of the 30 reactions in total. We identified the main causes for the lack of overlap. Importantly, the databases are partly complementary. Other explanations include the number of steps a conversion is described in and the number of possible alternative substrates listed. Missing metabolite identifiers and ambiguous names for metabolites also affect the comparison.

Conclusions

Our results show that each of the five networks compared provides us with a valuable piece of the puzzle of the complete reconstruction of the human metabolic network. To enable integration of the networks, next to a need for standardizing the metabolite names and identifiers, the conceptual differences between the databases should be resolved. Considerable manual intervention is required to reach the ultimate goal of a unified and biologically accurate model for studying the systems biology of human metabolism. Our comparison provides a stepping stone for such an endeavor.  相似文献   
30.

Background

Urban malaria is considered to be one of the most significant infectious diseases due to varied socioeconomic problems especially in tropical countries like India. Among the south Indian cities, Chennai is endemic for malaria. The present study aimed to identify the hot spots of malaria prevalence and the relationship with other factors in Chennai during 2005-2011.

Methods

Data on zone-wise and ward-wise monthly malaria positive cases were collected from the Vector Control Office, Chennai Corporation, for the year 2005 to 2011 and verified using field data. This data was used to calculate the prevalence among thousand people. Hotspot analysis for all the years in the study period was done to observe the spatial trend. Association of environmental factors like altitude, population density and climatic variables was assessed using ArcGIS 9.3 version and SPSS 11.5. Pearson’s correlation of climate parameters at 95% and 99% was considered to be the most significant. Social parameters of the highly malaria prone region were evaluated through a structured random questionnaire field survey.

Results

Among the ten zones of Chennai Corporation, Basin Bridge zone showed high malaria prevalence during the study period. The ‘hotspot’ analysis of malaria prevalence showed the emergence of newer hotspots in the Adyar zone. These hotspots of high prevalence are places of moderately populated and moderately elevated areas. The prevalence of malaria in Chennai could be due to rainfall and temperature, as there is a significant correlation with monthly rainfall and one month lag of monthly mean temperature. Further it has been observed that the socioeconomic status of people in the malaria hotspot regions and unhygienic living conditions were likely to aggravate the malaria problem.

Conclusion

Malaria hotspots will be the best method to use for targeting malaria control activities. Proper awareness and periodical monitoring of malaria is one of the quintessential steps to control this infectious disease. It has been argued that identifying the key environmental conditions favourable for the occurrence and spread of malaria must be integrated and documented to aid future predictions of malaria in Chennai.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号