首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   994篇
  免费   107篇
  1101篇
  2023年   7篇
  2022年   13篇
  2021年   17篇
  2020年   17篇
  2019年   22篇
  2018年   14篇
  2017年   18篇
  2016年   22篇
  2015年   44篇
  2014年   45篇
  2013年   55篇
  2012年   80篇
  2011年   94篇
  2010年   57篇
  2009年   55篇
  2008年   51篇
  2007年   47篇
  2006年   47篇
  2005年   46篇
  2004年   48篇
  2003年   41篇
  2002年   28篇
  2000年   7篇
  1999年   9篇
  1998年   10篇
  1997年   5篇
  1994年   4篇
  1993年   4篇
  1992年   4篇
  1990年   8篇
  1985年   6篇
  1983年   5篇
  1982年   9篇
  1981年   4篇
  1977年   5篇
  1976年   5篇
  1975年   7篇
  1974年   4篇
  1972年   4篇
  1971年   9篇
  1970年   7篇
  1969年   6篇
  1968年   4篇
  1967年   4篇
  1964年   5篇
  1963年   8篇
  1962年   4篇
  1961年   6篇
  1958年   4篇
  1943年   4篇
排序方式: 共有1101条查询结果,搜索用时 15 毫秒
61.
Abstract: 4-Aminopyridine evokes repetitive firing of synaptosomes and exocytosis of glutamate by inhibiting a dendrotoxin-sensitive K+ channel responsible for stabilizing the membrane potential. We have shown previously that activation of protein kinase C (PKC) by high concentrations of phorbol ester (4β-phorbol dibutyrate) can increase release by inhibiting a dendrotoxin-insensitive ion channel, whereas the metabotropic glutamate receptor (mGluR) agonist (1 S ,3 R )-1-aminocyclopentane-1,3-dicarboxylate [(1 S ,3 R )-ACPD] mimics the action of 4β-phorbol dibutyrate, but only in the presence of 2 µ M arachidonic acid (AA). In this article, we investigate the role of AA. AA plus (1 S ,3 R )-ACPD is without effect on KCl-induced glutamate exocytosis, indicating that the regulatory pathway acts upstream of the release-coupled Ca2+ channel or Ca2+-secretion coupling. Diacylglycerol concentrations are greatly enhanced by (1 S ,3 R )-ACPD alone, independently of AA, indicating that AA acts downstream of phospholipase C. Myristoylated alanine-rich C kinase substrate (MARCKS) is the major presynaptic substrate for PKC. mGluR activation by (1 S ,3 R )-ACPD enhances phosphorylation of MARCKS, but only in the presence of AA. These results strongly suggest that AA acts on presynaptic PKC synergistically with diacylglycerol generated by the phospholipase-coupled mGluR, consistent with the known behaviour of certain purified PKC isoforms. The magnitude of the effects observed in a population of rat cerebrocortical synaptosomes suggests that this is a major mechanism regulating the release of the brain's dominant excitatory neurotransmitter and supports the concept that AA, or a related compound with a similar locus of action, may in certain circumstances play a role in synaptic plasticity.  相似文献   
62.
Environmental pollution often accompanies the expansion and urbanization of human populations where sewage and wastewaters commonly have an impact on the marine environments. Here, we explored the potential for faecal bacterial pathogens, of anthropic origin, to spread to marine wildlife in coastal areas. The common zoonotic bacterium Campylobacter was isolated from grey seals (Halichoerus grypus), an important sentinel species for environmental pollution, and compared to isolates from wild birds, agricultural sources and clinical samples to characterize possible transmission routes. Campylobacter jejuni was present in half of all grey seal pups sampled (24/50 dead and 46/90 live pups) in the breeding colony on the Isle of May (Scotland), where it was frequently associated with histological evidence of disease. Returning yearling animals (19/19) were negative for C. jejuni suggesting clearance of infection while away from the localized colony infection source. The genomes of 90 isolates from seals were sequenced and characterized using a whole‐genome multilocus sequence typing (MLST) approach and compared to 192 published genomes from multiple sources using population genetic approaches and a probabilistic genetic attribution model to infer the source of infection from MLST data. The strong genotype‐host association has enabled the application of source attribution models in epidemiological studies of human campylobacteriosis, and here assignment analyses consistently grouped seal isolates with those from human clinical samples. These findings are consistent with either a common infection source or direct transmission of human campylobacter to grey seals, raising concerns about the spread of human pathogens to wildlife marine sentinel species in coastal areas.  相似文献   
63.
The defective allele of the endotoxin response locus (Lpsd) renders mice (e.g., C3H/HeJ strain) both endotoxin hyporesponsive and susceptible to Salmonella typhimurium. In this study, the mechanism of Lpsd-regulated susceptibility to murine typhoid was examined. C3H/ HeJ mice became significantly more resistant to S. typhimurium by reconstitution with bone marrow from syngeneic C3H/HeN mice (Lpsn, salmonella resistant). Thus, the Lpsd resistance defect appeared to reside in a radiosensitive bone marrow-derived cell(s). At least one of the abnormal cell types appeared to be a macrophage because C3H/HeJ mice preinfected with Mycobacterium bovis (BCG) were, in contrast to controls, able to restrict early salmonella replication in their spleens and displayed a signficant increase in mean time to death. In contrast, no deficiency in uptake of salmonellae by C3H/HeJ macrophages was observed. These results indicate that the early deaths of C3H/HeJ mice following S. typhimurium challenge reflect a failure of their macrophages to limit the growth of these gram-negative bacteria.  相似文献   
64.
When Escherichia coli cells are gamma irradiated they degrade their deoxyribonucleic acid (DNA). The DNA of previously gamma-irradiated T4 phage is also degraded in infected cells. The amount of degradation is not only dependent on the dose but also on the genotype of the cell. The amount of degradation is less in cells carrying a recB or a recC mutation, suggesting that most of the DNA degradation is due to the recB(+) and recC(+) gene product (exonuclease V). In some strains a previous dose of ultraviolet (UV) light followed by incubation renders the cells resistant to DNA degradation after gamma irradiation. We have shown this inhibition to take place for infecting T4 phage also. By using six strains of E. coli selected for mutations in the genes recA, exr (or lex), and uvrB, we have been able to show that the preliminary UV treatment produces no change in recA and exr cells for both endogenous DNA degradation and the degradation of infecting irradiated T4 phage DNA, i.e., inhibition was not detected in these strains. On the other hand, wild-type cells and strains carrying mutations of uvrB show inhibition in both types of experiments. Because the recA gene product and the exr(+) (lex(+)) gene product are necessary for the induction of prophage, it is possible that the phenomenon of inducible inhibition requires recA(+) and exr(+) presence. One interpretation of these results is that an inducible inhibitor may be controlled by the exr gene.  相似文献   
65.
Natural killer cells and innate immunity to protozoan pathogens   总被引:8,自引:0,他引:8  
Natural killer (NK) cells are lymphoid cells that mediate significant cytotoxic activity and produce high levels of pro-inflammatory cytokines in response to infection. During viral infection, NK cell cytotoxicity and cytokine production is induced principally by monocyte-macrophage- and dendritic cell-derived cytokines but virally encoded ligands for NK cells are also beginning to be described. NK derived interferon-gamma (IFN-gamma) production is also essential for control of several protozoal infections including toxoplasmosis, trypanosomiasis, leishmaniasis and malaria. The activation of NK cells by protozoan pathogens is also believed to be cytokine-mediated although some recent studies suggest that direct recognition of parasites by NK cells also occurs. Both indirect signalling via accessory cell-derived cytokines and direct signalling, presumably through NK receptors, are needed in order for human malaria parasites (Plasmodium falciparum) to optimally stimulate NK activity.  相似文献   
66.
Highly purified lamb kidney (Na++K+)-ATPase was photoaffinity labeled with the tritiated 2-nitro-5-azidobenzoyl derivative of ouabain (NAB-ouabain). The labeled (Na++K+)-ATPase was mixed with unlabeled carrier enzyme. Two proteolipid (γ1 and γ2) fractions were then isolated by chromatography on columns of Sepharose CL-6B and Sephadex LH-60. The two fractions were interchangeable when rechromatographed on the LH-60 column, suggesting that γ1 is an aggregated form of γ2. The total yield was 0.8–1.5 mol of γ component per mol of catalytic subunit recovered. This indicates that the γ component is present in stoichiometric amounts in the (Na++K+)-ATPase. The proteolipids that were labeled with NAB-ouabain copurified with the unlabeled proteolipids.  相似文献   
67.
Toxin-antitoxin modules are present on chromosomes of almost all free-living prokaryotes. Some are implicated to act as stress-responsive elements, among their many functional roles. The YefM-YoeB toxin-antitoxin system is present in many bacterial species, where YefM belongs to the Phd family antidote of phage P1, whereas YoeB is a homolog of the RelE toxin of the RelBE system, rather than the Doc system of phage P1. YoeB, a ribonuclease, is believed to be conformationally stable, whereas YefM has been proposed to be a member of intrinsically disordered proteins. The ribonucleolytic activity of YoeB is neutralized by YefM upon formation of the YefM-YoeB complex. We report here the crystal structure of Mycobacterium tuberculosis YefM from two crystal isoforms. Our crystallographic and biophysical studies reveal that YefM is not an intrinsically unfolded protein and instead forms a well-defined structure with significant secondary and tertiary structure conformations. The residues involved in core formation of the folded structure are evolutionarily conserved among many bacterial species, supporting our observation. The C-terminal end of its polypeptide is highly pliable, which adopts different conformations in different monomers. Since at the physiological level YefM controls the activity of YoeB through intricate protein-protein interactions, the conformational heterogeneity in YefM revealed by our structure suggests that these might act a master switch in controlling YoeB activity.  相似文献   
68.

Purpose

To develop a tri-modality image fusion method for better target delineation in image-guided radiotherapy for patients with brain tumors.

Methods

A new method of tri-modality image fusion was developed, which can fuse and display all image sets in one panel and one operation. And a feasibility study in gross tumor volume (GTV) delineation using data from three patients with brain tumors was conducted, which included images of simulation CT, MRI, and 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) examinations before radiotherapy. Tri-modality image fusion was implemented after image registrations of CT+PET and CT+MRI, and the transparency weight of each modality could be adjusted and set by users. Three radiation oncologists delineated GTVs for all patients using dual-modality (MRI/CT) and tri-modality (MRI/CT/PET) image fusion respectively. Inter-observer variation was assessed by the coefficient of variation (COV), the average distance between surface and centroid (ADSC), and the local standard deviation (SDlocal). Analysis of COV was also performed to evaluate intra-observer volume variation.

Results

The inter-observer variation analysis showed that, the mean COV was 0.14(±0.09) and 0.07(±0.01) for dual-modality and tri-modality respectively; the standard deviation of ADSC was significantly reduced (p<0.05) with tri-modality; SDlocal averaged over median GTV surface was reduced in patient 2 (from 0.57 cm to 0.39 cm) and patient 3 (from 0.42 cm to 0.36 cm) with the new method. The intra-observer volume variation was also significantly reduced (p = 0.00) with the tri-modality method as compared with using the dual-modality method.

Conclusion

With the new tri-modality image fusion method smaller inter- and intra-observer variation in GTV definition for the brain tumors can be achieved, which improves the consistency and accuracy for target delineation in individualized radiotherapy.  相似文献   
69.
Recruitment of effector T cells to sites of infection or inflammation is essential for an effective adaptive immune response. The chemokine CCL5 (RANTES) activates its cognate receptor, CCR5, to initiate cellular functions, including chemotaxis. In earlier studies, we reported that CCL5-induced CCR5 signaling activates the mTOR/4E-BP1 pathway to directly modulate mRNA translation. Specifically, CCL5-mediated mTOR activation contributes to T cell chemotaxis by initiating the synthesis of chemotaxis-related proteins. Up-regulation of chemotaxis-related proteins may prime T cells for efficient migration. It is now clear that mTOR is also a central regulator of nutrient sensing and glycolysis. Herein we describe a role for CCL5-mediated glucose uptake and ATP accumulation to meet the energy demands of chemotaxis in activated T cells. We provide evidence that CCL5 is able to induce glucose uptake in an mTOR-dependent manner. CCL5 treatment of ex vivo activated human CD3(+) T cells also induced the activation of the nutrient-sensing kinase AMPK and downstream substrates ACC-1, PFKFB-2, and GSK-3β. Using 2-deoxy-d-glucose, an inhibitor of glucose uptake, and compound C, an inhibitor of AMPK, experimental data are presented that demonstrate that CCL5-mediated T cell chemotaxis is dependent on glucose, as these inhibitors inhibit CCL5-mediated chemotaxis in a dose-dependent manner. Altogether, these findings suggest that both glycolysis and AMPK signaling are required for efficient T cell migration in response to CCL5. These studies extend the role of CCL5 mediated CCR5 signaling beyond lymphocyte chemotaxis and demonstrate a role for chemokines in promoting glucose uptake and ATP production to match energy demands of migration.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号