首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3521篇
  免费   564篇
  国内免费   14篇
  2022年   30篇
  2021年   46篇
  2020年   35篇
  2019年   51篇
  2018年   37篇
  2017年   39篇
  2016年   58篇
  2015年   113篇
  2014年   112篇
  2013年   169篇
  2012年   182篇
  2011年   214篇
  2010年   134篇
  2009年   127篇
  2008年   139篇
  2007年   148篇
  2006年   139篇
  2005年   143篇
  2004年   145篇
  2003年   137篇
  2002年   125篇
  2001年   100篇
  2000年   115篇
  1999年   86篇
  1998年   43篇
  1997年   44篇
  1996年   45篇
  1995年   43篇
  1994年   46篇
  1993年   51篇
  1992年   69篇
  1991年   62篇
  1990年   72篇
  1989年   73篇
  1988年   52篇
  1987年   64篇
  1986年   55篇
  1985年   67篇
  1984年   37篇
  1983年   42篇
  1982年   45篇
  1980年   23篇
  1979年   39篇
  1978年   30篇
  1977年   25篇
  1975年   23篇
  1974年   22篇
  1973年   21篇
  1971年   23篇
  1970年   29篇
排序方式: 共有4099条查询结果,搜索用时 31 毫秒
991.
At two field sites that differed in fertility, we investigated how species richness, functional group diversity, and species composition of constructed plant communities influenced invasion. Grassland communities were constructed to be either functionally diverse or functionally simple based on belowground resource use patterns of constituent species. Communities were also constructed with different numbers of species (two or five) to examine interactions between species richness, functional diversity and invasion resistance. We hypothesized that communities with more complementary belowground resource use (i.e., more species rich and more functionally diverse communities) would be less easily invaded than communities with greater degrees of belowground resource use overlap. Two contrasting invasive species were introduced: an early-season, shallow rooting annual grass, Bromus hordeaceus (soft chess), and a late-season, deep rooting annual forb, Centaurea solstitialis (yellow starthistle). Invader responses to species richness and functional diversity treatments differed between sites. In general, the more similar the patterns of belowground resource use between residents of the plant community and the invader, the poorer the invader’s performance. Complementarity or overlap of resource use among species in the constructed communities appeared to affect invader success less than complementarity or overlap of resource use between the invader and the species present in the community.  相似文献   
992.
Gamma-Cyhalothrin was proposed as an agent for management of lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae), in Australian broiler houses. From 2007 to 2009, baseline susceptibility of 20 Australian broiler farm beetle populations plus an insecticide-susceptible laboratory population was determined for gamma-cyhalothrin by using topical application. In addition, repeat testing and regression analyses of specific beetle populations to gamma-cyhalothrin showed that topical application was a very reliable and repeatable testing method. The 21 populations were tested with a cyfluthrin discriminating concentration (based on LC(99.9), 0.0007% [AI]) to identify possible cross-resistance. Across all populations, there was a significant linear relationship between the gamma-cyhalothrin LC50 value and mortality induced by the cyfluthrin LC(99.9). Full cyfluthrin baseline studies of seven populations indicated that gamma-cyhalothrin was twice as toxic as cyfluthrin, even against susceptible beetles and resistance ratios at the cyfluthrin LC50 and LC(99.9), varied considerably, with maxima of 56.6 and 83.6 respectively. Corresponding ratios for gamma-cyhalothrin for the same populations were 8.6 (LC50) and 7.9 (LC(99.9)). There were no significant correlations between beetle weights and gamma-cyhalothrin LC50 or LC(99.9), values. A discriminating concentration of 0.005% (AI) gamma-cyhalothrin was chosen to detect any future changes in susceptibility. Results of this study suggest that cyfluthrin can confer cross-resistance to gamma-cyhalothrin in A. diaperinus, but the magnitude of this resistance is unpredictable. Thus, widespread and frequent cyfluthrin use in broiler houses in eastern Australia, which has selected for cyfluthrin resistance, also has resulted in reduced susceptibility to gamma-cyhalothrin. Due to its higher relative toxicity, gamma-cyhalothrin is still potentially useful for management of lesser mealworm, but due to cross-resistance issues, adoption of gamma-cyhalothrin for broiler house use will require a cautious and judicious approach.  相似文献   
993.
994.
1.  The geographical range sizes of individual species vary considerably in extent, although the factors underlying this variation remain poorly understood, and could include a number of ecological and evolutionary processes. A favoured explanation for range size variation is that this result from differences in fundamental niche breadths, suggesting a key role for physiology in determining range size, although to date empirical tests of these ideas remain limited.
2.  Here we explore relationships between thermal physiology and biogeography, whilst controlling for possible differences in dispersal ability and phylogenetic relatedness, across 14 ecologically similar congeners which differ in geographical range extent; European diving beetles of the genus Deronectes Sharp (Coleoptera, Dytiscidae). Absolute upper and lower temperature tolerance and acclimatory abilities are determined for populations of each species, following acclimation in the laboratory.
3.  Absolute thermal tolerance range is the best predictor of both species' latitudinal range extent and position, differences in dispersal ability (based on wing size) apparently being less important in this group. In addition, species' northern and southern range limits are related to their tolerance of low and high temperatures respectively. In all cases, absolute temperature tolerances, rather than acclimatory abilities are the best predictors of range parameters, whilst the use of independent contrasts suggested that species' thermal acclimation abilities may also relate to biogeography, although increased acclimatory ability does not appear to be associated with increased range size.
4.  Our study is the first to provide empirical support for a relationship between thermal physiology and range size variation in widespread and restricted species, conducted using the same experimental design, within a phylogenetically and ecologically controlled framework.  相似文献   
995.
Questions: Do spatial and temporal patterns of encroachment of Pinus contorta and Abies grandis in a montane meadow suggest strong biotic controls on the invasion process? Location: Forest–meadow mosaic, 1350 m a.s.l., Cascade Range, Oregon, US. Methods: We combined spatial point pattern analysis, population age structures, and a time‐series of stem maps to quantify spatial and temporal patterns of conifer invasion over a 200‐yr period in three plots totaling 4 ha. Results: Trees established during two broad, but distinct periods (late 1800s, then at much greater density in the mid‐1900s). Recent invasion was not correlated with climatic variation. Abies grandis dominated both periods; P. contorta established at lower density, peaking before A. grandis. Spatially, older (≥90 yr) P. contorta were randomly distributed, but older A. grandis were strongly clumped (0.2‐20 m). Younger (<90 yr) stems were positively associated at small distances (both within and between species), but were spatially displaced from older A. grandis, suggesting a temporal shift from facilitation to competition. Establishment during the 1800s resulted in widely scattered P. contorta and clumps of A. grandis that placed most areas of meadow close to seed sources permitting more rapid invasion during the mid‐1900s. Rapid conversion to forest occurred via colonization of larger meadow openings – first by shade‐intolerant P. contorta, then by shade‐tolerant A. grandis– and by direct infilling of smaller openings by A. grandis. Conclusions: In combination, spatial and temporal patterns of establishment suggest an invasion process shaped by biotic interactions, with facilitation promoting expansion of trees into meadows and competition influencing subsequent forest development. Once invasion is initiated, tree species with different life histories and functional traits can interact synergistically to promote rapid conversion of meadow to forest under a broad range of climatic conditions.  相似文献   
996.
997.
Shotgun proteomic analysis of the human nail plate identified 144 proteins in samples from Causcasian volunteers. The 30 identified proteins solubilized by detergent and reducing agent, 90% of the total nail plate mass, were primarily keratins and keratin associated proteins. Keratins comprised a majority of the detergent-insoluble fraction as well, but numerous cytoplasmic, membrane, and junctional proteins and histones were also identified, indicating broad use by transglutaminases of available proteins as substrates for cross-linking. Two novel membrane proteins were identified, also found in the hair shaft, for which mRNAs were detected only at very low levels by real-time polymerase chain reaction in other tissues. Parallel analyses of nail samples from volunteers from Inner Mongolia, China gave essentially the same protein profiles. Comparison of the profiles of nail plate and hair shaft from the latter volunteers revealed extensive overlap of protein constituents. Analyses of samples from an arsenic-exposed population revealed few proteins whose levels were altered substantially but raised the possibility of detecting sensitive individuals in this way.  相似文献   
998.
Articular cartilage is indispensable for joint function but has limited capacity for self-repair. Engineering of neocartilage in vitro is therefore a major target for autologous cartilage repair in arthritis. Previous analysis of neocartilage has targeted cellular organization and specific molecular components. However, the complexity of extracellular matrix (ECM) development in neocartilage has not been investigated by proteomics. To redress this, we developed a mouse neocartilage culture system that produces a cartilaginous ECM. Differential analysis of the tissue proteome of 3-week neocartilage and 3-day postnatal mouse cartilage using solubility-based protein fractionation targeted components involved in neocartilage development, including ECM maturation. Initially, SDS-PAGE analysis of sequential extracts revealed the transition in protein solubility from a high proportion of readily soluble (NaCl-extracted) proteins in juvenile cartilage to a high proportion of poorly soluble (guanidine hydrochloride-extracted) proteins in neocartilage. Label-free quantitative mass spectrometry (LTQ-Orbitrap) and statistical analysis were then used to filter three significant protein groups: proteins enriched according to extraction condition, proteins differentially abundant between juvenile cartilage and neocartilage, and proteins with differential solubility properties between the two tissue types. Classification of proteins differentially abundant between NaCl and guanidine hydrochloride extracts (n = 403) using bioinformatics revealed effective partitioning of readily soluble components from subunits of larger protein complexes. Proteins significantly enriched in neocartilage (n = 78) included proteins previously not reported or with unknown function in cartilage (integrin-binding protein DEL1; coiled-coil domain-containing protein 80; emilin-1 and pigment epithelium derived factor). Proteins with differential extractability between juvenile cartilage and neocartilage included ECM components (nidogen-2, perlecan, collagen VI, matrilin-3, tenascin and thrombospondin-1), and the relationship between protein extractability and ECM ultrastructural organization was supported by electron microscopy. Additionally, one guanidine extract-specific neocartilage protein, protease nexin-1, was confirmed by immunohistochemistry as a novel component of developing articular cartilage in vivo. The extraction profile and matrix-associated immunostaining implicates protease nexin-1 in cartilage development in vitro and in vivo.The cartilage of the mammalian skeletal system has two distinct roles. The epiphyseal cartilage of the growth plate drives endochondral bone growth, and the hyaline cartilage at the weight-bearing surfaces of bones facilitates joint articulation. In both environments, chondrocyte-regulated production, assembly, and turnover of the extracellular matrix (ECM)1 are essential for the tissue to withstand compressive forces and respond to mechanical loading. The major structural constituents of cartilage ECM are the heterotypic collagen II/IX/XI fibrils and proteoglycan-glycosaminoglycan networks of aggrecan and hyaluronan. Loss of joint function in osteoarthritis (OA) is strongly associated with net loss of aggrecan and collagen breakdown caused by an imbalance of ECM homeostasis (1). In addition, many inherited human chondrodysplasias involve disruption of cartilage matrix assembly or cell-matrix interactions, resulting in abnormal skeletal development and in some cases early onset cartilage degeneration (2, 3).The alterations in chondrocyte metabolism that occur during OA are complex and remain poorly understood (4). An early response to loss or fragmentation of ECM components is attempted tissue repair through secretion of anabolic factors, cell proliferation, and matrix remodeling (5). However, the resulting product is a fibrocartilage that does not recapitulate the composition or precise architecture of the original hyaline articular cartilage. This limited capacity of cartilage for regeneration has driven research into cartilage tissue engineering (6). Production of authentic hyaline cartilage in vitro remains challenging due to the dedifferentiation of primary chondrocytes upon removal from their three-dimensional matrix environment (7). However, improved “neocartilage” culture systems have been developed through evaluation of suitable chondroprogenitor or chondrocyte subpopulations and optimization of exogenous support matrices and growth factors (8, 9). The therapeutic target of neocartilage culture is autologous tissue repair. However, there is fundamental value in using neocartilage systems to elucidate mechanisms of protein integration into the ECM and the role of specific protein interactions during cartilage maturation.Cartilage profiling by 2-DE and mass spectrometry-based proteomics is generating important new insight into mechanisms of cartilage degeneration in vitro and in vivo (10). For example, anabolic factors with potential roles in cartilage repair, including connective tissue growth factor and inhibin βA (activin), were identified in the secretome of human OA cartilage explants (11). Comparison of cartilage protein extracts from normal donors and OA patients revealed significantly increased levels of the serine protease Htra1 in patient cartilage (12) and that Htra1-mediated proteolysis of aggrecan may significantly contribute to OA pathology (13). Targeted analysis of the chondrocyte mitochondrial proteome highlighted OA-related changes in energy production and protection against reactive oxygen species (14). Obtaining sufficient chondrocytes from human donors for proteomics unfortunately requires expansion of the cell population with potential loss of the chondrocyte phenotype during prolonged culture. Other drawbacks encountered with human samples include the clinical heterogeneity of OA, lack of matched controls, and inherent genetic variation of human subjects (15). Alternatively, animal models that recapitulate hallmarks of progressive cartilage degeneration, such as aggrecan loss and articular surface fibrillation, are emerging as a powerful resource, particularly in mice lacking specific proteases or protease target sites (16, 17). The development of techniques for analysis of murine cartilage using proteomics has paved the way for differential analysis of normal and pathological or genetically targeted cartilage (18, 19).Label-free methods for relative peptide quantitation, such as ion intensity measurement and spectral counting, are emerging as reliable and cost-effective alternatives to chemical modification or isotopic peptide labeling (20). Combining orthogonal protein and/or peptide fractionation with high resolution HPLC-MS can achieve proteome-wide coverage (21). Because extensive sample fractionation can introduce redundancy and variation, improved sequence/proteome coverage must be balanced against the cost of additional sample handling and lengthy LC-MS runs (22).Here we describe a novel platform for analysis of mouse cartilage using solubility-based protein fractionation (19) combined with label-free quantitative tandem MS (LTQ-Orbitrap). Sequential extraction of 3-day postnatal (P3) mouse epiphyseal cartilage and 3-week neocartilage cultures revealed a marked transition from a high proportion of readily soluble components in P3 extracts to a greater proportion of poorly soluble proteins in neocartilage. Principal component analysis and hierarchical clustering were used to globally assess the inter-relationships between P3 cartilage and neocartilage NaCl and guanidine hydrochloride (GdnHCl) extracts. At a p value cutoff of 0.05, 403 proteins were classified as extract-specific, whereas 125 proteins were classified as tissue sample-specific. Many of the proteins significantly enriched in neocartilage were annotated by the terms cell adhesion, extracellular matrix, and cytoskeletal remodeling. Further statistical analysis identified a third important protein category in which protein solubility was altered between the P3 and neocartilage. Identification of proteins involved in neocartilage maturation has generated novel insight into the fundamental process of cartilage matrix development with potential for further analysis of engineered cartilaginous tissues with biomedical applications.  相似文献   
999.
1000.
Proteomic and lipidomic profiling was performed over a time course of acute hepatitis C virus (HCV) infection in cultured Huh-7.5 cells to gain new insights into the intracellular processes influenced by this virus. Our proteomic data suggest that HCV induces early perturbations in glycolysis, the pentose phosphate pathway, and the citric acid cycle, which favor host biosynthetic activities supporting viral replication and propagation. This is followed by a compensatory shift in metabolism aimed at maintaining energy homeostasis and cell viability during elevated viral replication and increasing cellular stress. Complementary lipidomic analyses identified numerous temporal perturbations in select lipid species (e.g. phospholipids and sphingomyelins) predicted to play important roles in viral replication and downstream assembly and secretion events. The elevation of lipotoxic ceramide species suggests a potential link between HCV-associated biochemical alterations and the direct cytopathic effect observed in this in vitro system. Using innovative computational modeling approaches, we further identified mitochondrial fatty acid oxidation enzymes, which are comparably regulated during in vitro infection and in patients with histological evidence of fibrosis, as possible targets through which HCV regulates temporal alterations in cellular metabolic homeostasis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号