首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   8篇
  152篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   3篇
  2012年   15篇
  2011年   12篇
  2010年   18篇
  2009年   14篇
  2008年   23篇
  2007年   9篇
  2006年   10篇
  2005年   8篇
  2004年   7篇
  2003年   6篇
  2002年   6篇
  2001年   1篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1989年   2篇
  1987年   1篇
  1984年   1篇
  1977年   1篇
  1974年   1篇
  1971年   1篇
  1965年   1篇
  1959年   1篇
排序方式: 共有152条查询结果,搜索用时 9 毫秒
91.
? Premise of the study: Hybridization is common in both animals and plants and can lead to a diverse array of outcomes ranging from the generation of new ecotypes or species to the breakdown of morphological differences. Here, we explore the extent of hybridization in the three currently recognized New World Rhizophora species-R. mangle, R. racemosa, and the putative hybrid species R. harrisonii. ? Methods: We assayed variation across the three recognized Rhizophora species using two noncoding chloroplast (cpDNA), two flanking microsatellite regions (FMRs), and six microsatellite loci. ? Key results: Gene genealogies of cpDNA and FMRs showed a strong phylogeographic break across the Central American Isthmus, but little relationship to recognized species boundaries. Instead, individuals collected in the same ocean basin and classified as R. mangle and R. racemosa by morphological characteristics were more closely related to each other than with similar looking individuals collected in the other ocean basin. Nonetheless, there were low, yet significant differences at microsatellite loci among co-occurring populations of R. mangle and R. racemosa in both ocean basins, suggesting that two taxonomic groups coexist. However, we found no genetic evidence that R. harrisonii was a hybrid species. Rather, R. harrisonii appears to represent a morphotype produced by ongoing hybridization and backcrossing between R. mangle and R. racemosa. ? Conclusions: Our data support ancient and persistent introgressive hybridization among new world Rhizophora and argue for a full revision of the systematic relationships of the group based on much finer morphological, ecological, and genetic analyses.  相似文献   
92.
93.
94.
We examined the species-area relationship for three historically distinct subsets of Lesser Antillean birds identified by molecular phylogenetic analysis of island and continental populations. The groups comprised recent colonists from continental or Greater Antillean source populations, old taxa having recently expanded distributions within the Lesser Antilles, and old endemic taxa lacking evidence of recent dispersal between islands. The number of young taxa was primarily related to distance from the source of colonists in South America. In a multiple regression, the logarithmic slope of the species-area relationship for this group was shallow (0.066+/-0.016). Old endemic taxa were restricted to islands with high elevation, and within this subset, species richness was related primarily to island area, with a steep slope (0.719+/-0.110). The number of recently spread endemic taxa was related primarily to island elevation, apparently reflecting the persistence of such populations on islands with large areas of forested and montane habitats. Historical analysis of the Lesser Antillean avifauna supports the dynamic concept of island biogeography of MacArthur and Wilson, rather than the more static view of David Lack, in that colonists exhibit dispersal limitation and extinction plays a role in shaping patterns of diversity. However, the avifauna of the Lesser Antilles is probably not in equilibrium at present, and the overall species-area relationship might reflect changing proportions of historically distinguishable subsets of species.  相似文献   
95.
We recovered 26 genetically distinct avian malaria parasite lineages, based on cytochrome b sequences, from a broad survey of terrestrial avifauna of the Lesser Antilles. Here we describe their distributions across host species within a regional biogeographic context. Most parasite lineages were recovered from a few closely related host species. Specialization on one host species and distribution across many hosts were both rare. Geographic patterns of parasite lineages indicated limited dispersal and frequent local extinction. The central islands of the archipelago share similar parasite lineages and patterns of infection. However, the peripheral islands harbor well-differentiated parasite communities, indicating long periods of isolation. Nonetheless, 20 of 26 parasite lineages were recovered from at least one of three other geographic regions, the Greater Antilles, North America, and South America, suggesting rapid dispersal relative to rate of differentiation. Six parasite lineages were restricted to the Lesser Antilles, primarily to endemic host species. Host differences between populations of the same parasite lineage suggest that host preference may evolve more rapidly than mitochondrial gene sequences. Taken together, distributions of avian malarial parasites reveal evidence of coevolution, host switching, extinction, and periodic recolonization events resulting in ecologically dynamic as well as evolutionarily stable patterns of infection.  相似文献   
96.
Communication signals are highly diverse traits. This diversity is usually assumed to be shaped by selective forces, whereas the null hypothesis of divergence through drift is often not considered. In Panama, the weakly electric fish Brachyhypopomus occidentalis is widely distributed in multiple independent drainage systems, which provide a natural evolutionary laboratory for the study of genetic and signal divergence in separate populations. We quantified geographic variation in the electric signals of 109 fish from five populations, and compared it to the neutral genetic variation estimated from cytochrome oxidase I (COI) sequences of the same individuals, to test whether drift may be driving divergence of their signals. Signal distances were highly correlated with genetic distances, even after controlling for geographic distances, suggesting that drift alone is sufficient to explain geographic variation in electric signals. Significant differences at smaller geographic scales (within drainages) showed, however, that electric signals may evolve at a faster rate than expected under drift, raising the possibility that additional adaptive forces may be contributing to their evolution. Overall, our data point to stochastic forces as main drivers of signal evolution in this species and extend the role of drift in the evolution of communication systems to fish and electrocommunication.  相似文献   
97.
We analyzed mitochondrial DNA (mtDNA) restriction-site variation in bananaquit (Coereba flaveola; Aves, Coerebinae) populations sampled on 12 Caribbean islands and at 5 continental localities in Central America and northern South America. Multiple fixed restriction-site differences genetically defined several regional bananaquit populations. An mtDNA clade representing all Jamaican bananaquits was the most divergent; the estimated average sequence divergence (dxy) between Jamaican and all other mtDNA haplotypes surveyed was 0.027. Three groups of populations, representing Central America, northern South America, and the eastern Antilles (Puerto Rico to Grenada) were nearly equally differentiated among themselves (average dxy = 0.014), and may represent a single, recent range expansion. Within the eastern Antilles, three geographically restricted haplotype groups were identified: Puerto Rico, north-central Lesser Antilles (U.S. Virgin Islands to St. Lucia), and Grenada–St. Vincent. The evolutionary relationships of these groups were not clear. Genetic homogeneity of the island populations from the U.S. Virgin Islands to St. Lucia suggested a recent spread of a specific north-central Lesser Antillean haplotype through most of those islands. Haplotype variation across this region indicated that this spread may have occurred in two waves, first through the southernmost islands of St. Lucia, Martinique, and Dominica, and more recently from Guadeloupe to the north. The geographic distribution of mtDNA haplotypes, and of bananaquit populations, suggests periods of invasiveness followed by relative geographic quiescence. Although most genetic studies of bird populations have revealed homogeneity over large geographic areas, our findings provide a remarkable counterexample of strong geographic structuring of mtDNA variation over relatively small distances. Furthermore, although the mtDNA data were consistent with several subspecific distinctions, it was clear that named subspecies do not define equally differentiated evolutionary entities.  相似文献   
98.

Background

Worldwide, grapes and their derived products have a large market. The cultivated grape species Vitis vinifera has potential to become a model for fruit trees genetics. Like many plant species, it is highly heterozygous, which is an additional challenge to modern whole genome shotgun sequencing. In this paper a high quality draft genome sequence of a cultivated clone of V. vinifera Pinot Noir is presented.

Principal Findings

We estimate the genome size of V. vinifera to be 504.6 Mb. Genomic sequences corresponding to 477.1 Mb were assembled in 2,093 metacontigs and 435.1 Mb were anchored to the 19 linkage groups (LGs). The number of predicted genes is 29,585, of which 96.1% were assigned to LGs. This assembly of the grape genome provides candidate genes implicated in traits relevant to grapevine cultivation, such as those influencing wine quality, via secondary metabolites, and those connected with the extreme susceptibility of grape to pathogens. Single nucleotide polymorphism (SNP) distribution was consistent with a diffuse haplotype structure across the genome. Of around 2,000,000 SNPs, 1,751,176 were mapped to chromosomes and one or more of them were identified in 86.7% of anchored genes. The relative age of grape duplicated genes was estimated and this made possible to reveal a relatively recent Vitis-specific large scale duplication event concerning at least 10 chromosomes (duplication not reported before).

Conclusions

Sanger shotgun sequencing and highly efficient sequencing by synthesis (SBS), together with dedicated assembly programs, resolved a complex heterozygous genome. A consensus sequence of the genome and a set of mapped marker loci were generated. Homologous chromosomes of Pinot Noir differ by 11.2% of their DNA (hemizygous DNA plus chromosomal gaps). SNP markers are offered as a tool with the potential of introducing a new era in the molecular breeding of grape.  相似文献   
99.
Theory shows that speciation in the presence of gene flow occurs only under narrow conditions. One of the most favourable scenarios for speciation with gene flow is established when a single trait is both under disruptive natural selection and used to cue assortative mating. Here, we demonstrate the potential for a single trait, colour pattern, to drive incipient speciation in the genus Hypoplectrus (Serranidae), coral reef fishes known for their striking colour polymorphism. We provide data demonstrating that sympatric Hypoplectrus colour morphs mate assortatively and are genetically distinct. Furthermore, we identify ecological conditions conducive to disruptive selection on colour pattern by presenting behavioural evidence of aggressive mimicry, whereby predatory Hypoplectrus colour morphs mimic the colour patterns of non-predatory reef fish species to increase their success approaching and attacking prey. We propose that colour-based assortative mating, combined with disruptive selection on colour pattern, is driving speciation in Hypoplectrus coral reef fishes.  相似文献   
100.
Heroini constitute the second largest tribe of Neotropical cichlids and show their greatest diversity in Mesoamerica. Although heroine species are morphologically and ecologically very diverse, they were all historically assigned to one single genus, Cichlasoma that was never formally revised from a phylogenetic point of view. Here, we present the most comprehensive molecular phylogeny of the tribe Heroini to date, based on the complete DNA sequence of the mitochondrial gene cytochrome b, and the analysis of 204 individuals representing 91 species. Phylogenetic analyses did not support the monophyly of heroines because the genus Pterophyllum was placed as the sister group of all remaining heroines plus cichlasomatines. However, the recovered relative position of Pterophyllum was without strong statistical support. Within the remaining heroines, Hyspelecara and Hoplarchus are recovered with low support in a basal position with respect to a clade that includes Heros, Uaru, Mesonauta, and Symphysodon, and the circumamazonian (CAM) heroines. The first clade is restricted to South America. The largest clade of heroines, the CAM heroines, include more than 85% of the species within the tribe. This clade is mostly Mesoamerican, but also contains four species found in the Greater Antilles (Nandopsis), and three genera found in South America (the 'Heros' festae group, Australoheros, and Caquetaia). Up to eight major lineages can be recovered within the CAM heroines, but the phylogenetic relationships among them remain unresolved. Two large suprageneric groups can be distinguished, the amphilophines and the herichthyines. The amphilophines include Amphilophus, Archocentrus, Hypsophrys, Neetroplus, Parachromis, Petenia, and five additional unnamed genera (the 'Heros' istlanus group, the 'Amphilophus' calobrensis group, the 'Heros' urophthalmus group, the 'Heros' wesseli group, and the 'Heros' sieboldii group). The herichthyines include the crown-group herichthyines (Herichthys, Theraps, Vieja, and Paratheraps) and the genera Tomocichla, Herotilapia, and Thorichthys, together with three unnamed genera (the 'Heros' umbriferus group, the 'Heros' grammodes group, and the 'Heros' salvini group). Amphilophines are prevalent in southern Mesomerica south of the Motagua fault. Herichthyines have basal linages in Central America, whereas crown-group herichthyines and three related genera are found north from the Motagua fault. At least two independent origins are required to explain current Mesoamerican heroine distribution. Dispersal of heroines from South America into Mesoamerica was dated between 24 and 16 million years ago (MYA) based on geological calibrations and on standard fish mitochondrial cytochrome b rates, respectively. These datings cannot be reconciled with currently known geological evidence, and the existence of a connection between Central America and South America in the Miocene needs to be postulated in order to explain the origins of Mesoamerican heroine lineages. However, our datings agree with those estimated for the dispersal of other secondary freshwater fishes (Rivulidae, Synbranchus) into Mesoamerica, and predate the invasion of primary freshwater fishes by at least 10 myr.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号