首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5175篇
  免费   343篇
  国内免费   1篇
  5519篇
  2023年   28篇
  2022年   55篇
  2021年   118篇
  2020年   78篇
  2019年   91篇
  2018年   124篇
  2017年   110篇
  2016年   149篇
  2015年   269篇
  2014年   247篇
  2013年   334篇
  2012年   437篇
  2011年   377篇
  2010年   235篇
  2009年   220篇
  2008年   345篇
  2007年   281篇
  2006年   289篇
  2005年   254篇
  2004年   232篇
  2003年   205篇
  2002年   193篇
  2001年   72篇
  2000年   55篇
  1999年   71篇
  1998年   58篇
  1997年   38篇
  1996年   26篇
  1995年   40篇
  1994年   27篇
  1993年   23篇
  1992年   27篇
  1991年   30篇
  1990年   18篇
  1989年   22篇
  1988年   29篇
  1987年   26篇
  1986年   17篇
  1985年   34篇
  1984年   23篇
  1983年   18篇
  1982年   20篇
  1981年   24篇
  1980年   18篇
  1979年   9篇
  1978年   17篇
  1977年   14篇
  1976年   10篇
  1974年   16篇
  1973年   12篇
排序方式: 共有5519条查询结果,搜索用时 15 毫秒
101.
A case of plasma cell granuloma of the tongue in an otherwise symptomless 48-year-old caucasian female is reported. The polyclonal nature of the plasmocytes was revealed by immunostaining of kappa and lambda light chains. Electron microscopic observations showed typical mature plasmocytes. A parasitic etiology of this type of lesion is suggested.  相似文献   
102.
103.
Linkage mapping of the primary disease locus for collie eye anomaly   总被引:1,自引:0,他引:1  
Collie eye anomaly (cea) is a hereditary ocular disorder affecting development of the choroid and sclera segregating in several breeds of dog, including rough, smooth, and Border collies and Australian shepherds. The disease is reminiscent of the choroidal hypoplasia phenotype observed in humans in conjunction with craniofacial or renal abnormalities. In dogs, however, the clinical phenotype can vary significantly; many dogs exhibit no obvious clinical consequences and retain apparently normal vision throughout life, while severely affected animals develop secondary retinal detachment, intraocular hemorrhage, and blindness. We report genetic studies establishing that the primary cea phenotype, choroidal hypoplasia, segregates as an autosomal recessive trait with nearly 100% penetrance. We further report linkage mapping of the primary cea locus to a 3.9-cM region of canine chromosome 37 (LOD = 22.17 at theta = 0.076), in a region corresponding to human chromosome 2q35. These results suggest the presence of a developmental regulatory gene important in ocular embryogenesis, with potential implications for other disorders of ocular vascularization.  相似文献   
104.
Background5-Fluorouracil (5-FU) induces intestinal mucositis, which is characterized by epithelial ulcerations in the mucosa and clinical manifestations, such as pain and dyspeptic symptoms. Cytokines participate in the inflammatory and functional events of intestinal mucositis. IL-4 is an important mediator of intestinal inflammation, with either anti-inflammatory or pro-inflammatory functions, depending on the model of intestinal inflammation. This study aimed to evaluate the role of IL-4 in 5-FU-induced intestinal mucositis.MethodsIL-4+/+ or IL-4?/? mice (25–30 g) were intraperitoneally injected with 5-FU (450 mg/Kg) or saline (C). After 3 days, the mice were sacrificed and the duodenum was evaluated for epithelial damage, MPO activity and cytokine concentration.Results5-FU induced significant damage in the intestinal epithelium of IL-4+/+ mice (reduction in the villus/crypt ratio: control = 3.31 ± 0.21 μm, 5-FU = 0.99 ± 0.10 μm). However, the same treatment did not induce significant damage in IL-4?/? mice (5-FU = 2.87 ± 0.19 μm) compared to wild-type mice. 5-FU-induced epithelial damage increased the MPO activity (neutrophil number) and the level of pro-inflammatory cytokines (IL-4, TNF-α, IL-1β and CXCL-8) in the duodenum. These results were not observed in IL-4?/? mice treated with 5-FU.ConclusionOur data suggest that IL-4 participates as a pro-inflammatory cytokine in a 5-FU-induced intestinal damage model and suggests that IL-4 antagonists may be novel therapeutics for this condition.  相似文献   
105.
There is a growing literature indicating that genetic variants modify many of the associations between environmental exposures and clinical outcomes, potentially by increasing susceptibility to these exposures. However, genome-scale investigations of these interactions have been rarely performed particularly in the case of air pollution exposures. We performed race-stratified genome-wide gene-environment interaction association studies on European-American (EA, N = 1623) and African-American (AA, N = 554) cohorts to investigate the joint influence of common single nucleotide polymorphisms (SNPs) and residential exposure to traffic (“traffic exposure”)—a recognized vascular disease risk factor—on peripheral arterial disease (PAD). Traffic exposure was estimated via the distance from the primary residence to the nearest major roadway, defined as the nearest limited access highways or major arterial. The rs755249-traffic exposure interaction was associated with PAD at a genome-wide significant level (P = 2.29x10-8) in European-Americans. Rs755249 is located in the 3’ untranslated region of BMP8A, a member of the bone morphogenic protein (BMP) gene family. Further investigation revealed several variants in BMP genes associated with PAD via an interaction with traffic exposure in both the EA and AA cohorts; this included interactions with non-synonymous variants in BMP2, which is regulated by air pollution exposure. The BMP family of genes is linked to vascular growth and calcification and is a novel gene family for the study of PAD pathophysiology. Further investigation of BMP8A using the Genotype Tissue Expression Database revealed multiple variants with nominally significant (P < 0.05) interaction P-values in our EA cohort were significant BMP8A eQTLs in tissue types highlight relevant for PAD such as rs755249 (tibial nerve, eQTL P = 3.6x10-6) and rs1180341 (tibial artery, eQTL P = 5.3x10-6). Together these results reveal a novel gene, and possibly gene family, associated with PAD via an interaction with traffic air pollution exposure. These results also highlight the potential for interactions studies, particularly at the genome scale, to reveal novel biology linking environmental exposures to clinical outcomes.  相似文献   
106.
107.
An antibody that inhibits over 95% of the cytosolic NADP+-dependent gamma-hydroxybutyrate (GHB) dehydrogenase activity of either rat brain or kidney was found to inhibit only approximately 50% of the conversion of [1-14C]GHB to 14CO2 by rat kidney homogenate. A similar result was obtained with sodium valproate, a potent inhibitor of GHB dehydrogenase. The mitochondrial fraction from rat brain and kidney was found to catalyze the conversion of [1-14C]GHB to 14CO2. The dialyzed mitochondrial fraction also catalyzed the oxidation of GHB to succinic semialdehyde (SSA) in a reaction that did not require added NAD+ or NADP+ and which was not inhibited by sodium valproate. The enzyme from the mitochondrial fraction which converts GHB to SSA appears to be distinct from the NADP+-dependent cytosolic oxidoreductase which catalyzes this reaction.  相似文献   
108.
109.
Distribution ranges of plant species are related to physical variables of ecosystems that limit plant growth. Therefore, each plant species response to physical factors builds up the functional diversity of an ecosystem. The higher the species richness of an ecosystem, the larger the probability of maintaining functions and the higher the potential number of plant functional groups (FGs). Thus, the richness potentially increases the number of functions of the highly diverse Atlantic Rainforest domain in Brazil. Severe plant growth limitations caused by stress, however, decrease species richness. In the Spodosols of the Mussununga, an associated ecosystem of Atlantic Rainforest, the percentage of fine sand is directly related to water retention. Moreover, the depth of the cementation layer in the Mussununga??s sandy soil is a physical factor that can affect the plants?? stress gradients. When a shallow cementation layer depth is combined with low water retention in soils and with low fine sand percentage, the double stresses of flooding in the rainy season and water scarcity in the dry season result. This study aimed to identify FGs among Mussununga plant species responding to water stress gradients of soil and to verify the effects of the gradients on plant species richness of the Mussununga. A canonical correspondence analysis (CCA) of species abundance and soil texture variables was performed on 18 plots in six physiognomies of the Mussununga. Species richness rarefactions were calculated for each vegetation form to compare diversity. The two main axes of the CCA showed two FGs responding to soil texture and cementation layer depth: stress tolerator species and mesic species. Physical variables affect plant diversity, with species richness rising as the fine sand proportion also rises in the Mussununga. The effect of the cementation layer is not significantly related to species richness variation.  相似文献   
110.
In this work, we present a computational study on the antioxidant potential of myricetin 3,4\(^{\prime }\)-di-O-α-L-rhamnopyranoside (Compound M). A density functional theory (DFT) approach with the B3LYP and LC-ωPBE functionals and with both the 6-311G(d,p) and 6-311+G(d,p) basis sets was used. The focus of the investigation was on the structural and energetic parameters including both bond dissociation enthalpies (BDEs) and ionization potentials (IPs), which provide information on the potential antioxidant activity. The properties computed were compared with BDEs and IPs available in the literature for myricetin, a compound well known for presenting antioxidant activity (and the parent molecule of the compound of interest in the present work). Myricetin 3,4\(^{\prime }\)-di-O-α-L-rhamnopyranoside presented the lowest BDE to be 79.13 kcal/mol (as determined using B3LYP/6-311G(d,p) in water) while myricetin has a quite similar value (within 3.4 kcal/mol). IPs computed in the gas phase [B3LYP/6-311G(d,p)] are 157.18 and 161.4 kcal/mol for myricetin 3,4\(^{\prime }\)-di-O-α-L-rhamnopyranoside and myricetin, respectively. As the values of BDEs are considerably lower than the ones probed for IPs (in the gas phase or in any given solvent environment), the hydrogen atom transfer mechanism is preferred over the single electron transfer mechanism. The BDEs obtained suggest that myricetin 3,4\(^{\prime }\)-di-O-α-L-rhamnopyranoside can present antioxidant potential as good as the parent molecule myricetin (a well-known antioxidant). Therefore, experimental tests on the antioxidant activity of Compound M are encouraged.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号