首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5384篇
  免费   387篇
  国内免费   1篇
  2023年   33篇
  2022年   50篇
  2021年   129篇
  2020年   83篇
  2019年   107篇
  2018年   131篇
  2017年   127篇
  2016年   184篇
  2015年   279篇
  2014年   278篇
  2013年   323篇
  2012年   469篇
  2011年   388篇
  2010年   247篇
  2009年   234篇
  2008年   374篇
  2007年   270篇
  2006年   309篇
  2005年   234篇
  2004年   243篇
  2003年   205篇
  2002年   194篇
  2001年   72篇
  2000年   56篇
  1999年   53篇
  1998年   60篇
  1997年   40篇
  1996年   27篇
  1995年   45篇
  1994年   33篇
  1993年   26篇
  1992年   35篇
  1991年   30篇
  1990年   25篇
  1989年   28篇
  1988年   24篇
  1987年   24篇
  1986年   22篇
  1985年   25篇
  1984年   17篇
  1983年   17篇
  1982年   18篇
  1981年   27篇
  1980年   22篇
  1979年   11篇
  1978年   20篇
  1977年   19篇
  1976年   13篇
  1974年   15篇
  1973年   12篇
排序方式: 共有5772条查询结果,搜索用时 31 毫秒
971.
The consumption of organic tomatoes (ORTs) reduces the risk of harmful effects to humans and the environment caused by exposure to toxic agrochemicals. In this study, we used the somatic mutation and recombination test (SMART) of wing spots in Drosophila melanogaster to evaluate the genotoxicity of ORT and the effect of cotreatment with ORT on the genotoxicity of Doxorubicin® (DXR, a cancer chemotherapeutic agent) that is mediated by free radical formation. Standard (ST) cross larvae were treated chronically with solutions containing 25%, 50% or 100% of an aqueous extract of ORT, in the absence and presence of DXR (0.125 mg/mL), and the number of mutant spots on the wings of emergent flies was counted. ORT alone was not genotoxic but enhanced the toxicity of DXR when administered concomitantly with DXR. The ORT-enhanced frequency of spots induced by DXR may have resulted from the interaction of ORT with the enzymatic systems that catalyze the metabolic detoxification of this drug.  相似文献   
972.
Miltefosine has been shown to be a very active compound against Trypanosoma cruzi. Here, we evaluated the effects of miltefosine on the activity of the Na+-ATPase and protein kinase C (PKC) present in the plasma membrane of T. cruzi. Furosemide (2 mM), a specific inhibitor of Na+-ATPase, abolished the growth of T. cruzi showing a crucial role of this enzyme to parasite growth. Miltefosine inhibited the Na+-ATPase activity with IC50 = 18 ± 5 μg mL−1. This effect was shown to be reversible, dependent on the pH and Ca2+. The inhibition was not observed when the membranes were solubilized with 0.1% deoxycholate, suggesting that the interaction between the enzyme and membrane phospholipids might be important for the drug effect. Miltefosine also inhibited the parasite PKC activity, but through a Na+-ATPase-independent way. Altogether the results indicate that miltefosine inhibits T. cruzi growth through, at least in part, the inhibition of both Na+-ATPase and PKC activities.  相似文献   
973.
We report recessive mutations in the gene for the latent transforming growth factor-β binding protein 4 (LTBP4) in four unrelated patients with a human syndrome disrupting pulmonary, gastrointestinal, urinary, musculoskeletal, craniofacial, and dermal development. All patients had severe respiratory distress, with cystic and atelectatic changes in the lungs complicated by tracheomalacia and diaphragmatic hernia. Three of the four patients died of respiratory failure. Cardiovascular lesions were mild, limited to pulmonary artery stenosis and patent foramen ovale. Gastrointestinal malformations included diverticulosis, enlargement, tortuosity, and stenosis at various levels of the intestinal tract. The urinary tract was affected by diverticulosis and hydronephrosis. Joint laxity and low muscle tone contributed to musculoskeletal problems compounded by postnatal growth delay. Craniofacial features included microretrognathia, flat midface, receding forehead, and wide fontanelles. All patients had cutis laxa. Four of the five identified LTBP4 mutations led to premature termination of translation and destabilization of the LTBP4 mRNA. Impaired synthesis and lack of deposition of LTBP4 into the extracellular matrix (ECM) caused increased transforming growth factor-β (TGF-β) activity in cultured fibroblasts and defective elastic fiber assembly in all tissues affected by the disease. These molecular defects were associated with blocked alveolarization and airway collapse in the lung. Our results show that coupling of TGF-β signaling and ECM assembly is essential for proper development and is achieved in multiple human organ systems by multifunctional proteins such as LTBP4.  相似文献   
974.
The enzymes of the KsgA/Dim1 family are universally distributed throughout all phylogeny; however, structural and functional differences are known to exist. The well-characterized function of these enzymes is to dimethylate two adjacent adenosines of the small ribosomal subunit in the normal course of ribosome maturation, and the structures of KsgA from Escherichia coli and Dim1 from Homo sapiens and Plasmodium falciparum have been determined. To this point, no examples of archaeal structures have been reported. Here, we report the structure of Dim1 from the thermophilic archaeon Methanocaldococcus jannaschii. While it shares obvious similarities with the bacterial and eukaryotic orthologs, notable structural differences exist among the three members, particularly in the C-terminal domain. Previous work showed that eukaryotic and archaeal Dim1 were able to robustly complement for KsgA in E. coli. Here, we repeated similar experiments to test for complementarity of archaeal Dim1 and bacterial KsgA in Saccharomyces cerevisiae. However, neither the bacterial nor the archaeal ortholog could complement for the eukaryotic Dim1. This might be related to the secondary, non-methyltransferase function that Dim1 is known to play in eukaryotic ribosomal maturation. To further delineate regions of the eukaryotic Dim1 critical to its function, we created and tested KsgA/Dim1 chimeras. Of the chimeras, only one constructed with the N-terminal domain from eukaryotic Dim1 and the C-terminal domain from archaeal Dim1 was able to complement, suggesting that eukaryotic-specific Dim1 function resides in the N-terminal domain also, where few structural differences are observed between members of the KsgA/Dim1 family. Future work is required to identify those determinants directly responsible for Dim1 function in ribosome biogenesis. Finally, we have conclusively established that none of the methyl groups are critically important to growth in yeast under standard conditions at a variety of temperatures.  相似文献   
975.
Kaposi''s sarcoma-associated herpesvirus is an emerging pathogen whose mechanism of replication is poorly understood. PF-8, the presumed processivity factor of Kaposi''s sarcoma-associated herpesvirus DNA polymerase, acts in combination with the catalytic subunit, Pol-8, to synthesize viral DNA. We have solved the crystal structure of residues 1 to 304 of PF-8 at a resolution of 2.8 Å. This structure reveals that each monomer of PF-8 shares a fold common to processivity factors. Like human cytomegalovirus UL44, PF-8 forms a head-to-head dimer in the form of a C clamp, with its concave face containing a number of basic residues that are predicted to be important for DNA binding. However, there are several differences with related proteins, especially in loops that extend from each monomer into the center of the C clamp and in the loops that connect the two subdomains of each protein, which may be important for determining PF-8''s mode of binding to DNA and to Pol-8. Using the crystal structures of PF-8, the herpes simplex virus catalytic subunit, and RB69 bacteriophage DNA polymerase in complex with DNA and initial experiments testing the effects of inhibition of PF-8-stimulated DNA synthesis by peptides derived from Pol-8, we suggest a model for how PF-8 might form a ternary complex with Pol-8 and DNA. The structure and the model suggest interesting similarities and differences in how PF-8 functions relative to structurally similar proteins.Most if not all organisms with DNA genomes have mechanisms to ensure processive DNA synthesis. In bacteria, archaea, and eukaryotes, DNA polymerase subunits include a catalytic subunit and a processivity factor, often referred to as a “sliding clamp.” In these organisms, a clamp loader protein is required to assemble the processivity factor onto the DNA (27, 37). The bacterial sliding (beta) clamp is made up of homodimers of a subunit that comprises three structurally similar subdomains (26), whereas archaeal and eukaryotic proliferating cell nuclear antigen (PCNA) is composed of homotrimers that comprise two structurally similar subdomains (27, 37). For both of these clamps, the monomers assemble head-to-tail to form a closed homodimeric or homotrimeric ring, respectively, around the DNA. In these organisms, a clamp loader protein is required to efficiently load the clamp onto DNA, using an ATP-dependent process. Once loaded on DNA, the processivity factor is capable of binding directly to the DNA polymerase, conferring extended strand synthesis without falling off of the template (50).Herpesviruses encode their own DNA polymerases. However, unlike bacteria, archaea, and eukaryotes, herpesviruses do not encode clamp loaders to assemble their processivity factors onto the DNA. Yet, the accessory subunits of the herpesvirus DNA polymerases still associate with DNA with nanomolar affinity to enable long-chain DNA synthesis (9, 16, 23, 25, 29, 35, 44, 46, 53, 56). Human herpesviruses are divided into three classes, namely, the alpha-, beta-, and gammaherpesviruses, based on homologies found in their genomic organization as well as in protein sequences and function (45). Crystal structures have been determined for the processivity factor UL42 from the alphaherpesvirus herpes simplex virus type 1 (HSV-1) and for UL44 from the betaherpesvirus human cytomegalovirus (HCMV) (2, 3, 58). Despite having little if any sequence homology with processivity factors outside of their herpesvirus subfamily, these structures all share the “processivity fold” originally seen in the structure of the bacterial beta clamp (26). Interestingly, some of these processivity factors have a different quaternary structure. PCNA forms a head-to-tail trimeric ring (18, 27), HSV-1 UL42 is a monomer (10, 14, 16, 46, 58) equivalent to one-third of the PCNA complex, and HCMV UL44 is a head-to-head dimer in the form of a C-shaped clamp (2, 3, 9).Both HSV-1 UL42 and HCMV UL44 have a basic face that has been shown to be important for interacting with DNA (25, 35). In the case of dimeric HCMV UL44, the basic surface of each monomer faces inward, toward the center of the C clamp, and includes a basic loop, called the “gap loop,” that is thought to wrap around DNA (24). Recently the crystal structure of the bacterial beta clamp was determined in complex with DNA (15). In that structure, DNA was found to be located in the central pore of the clamp. Amino acid residues that interacted with DNA were in positions structurally homologous to those found on the positively charged faces of UL42 and UL44.UL42 and UL44 each also has a surface, facing away from the DNA binding face, that is important for interacting with the catalytic subunit of the viral DNA polymerase. Indeed, both of these proteins have been crystallized in complex with C-terminal peptides from their respective catalytic subunits, HSV-1 UL30 and HCMV UL54 (2, 58). Together with biochemical and mutational analyses, these crystal structures indicated that, although the details of the interaction are different, the catalytic subunit of the polymerase binds to a region including and in close proximity to a long loop that connects the N- and C-terminal subdomains, called the interdomain connector loop (32-34). The corresponding region of PCNA is also important for polymerase attachment and mediates the interactions of PCNA with many other cellular proteins (40). Both UL54 and UL30 were shown to attach to their respective subunits, UL44 and UL42, by way of their extreme C termini. The C-terminal residues responsible for this interaction correspond to amino acids that are not detectably conserved, either by sequence or by structure, among herpesvirus catalytic subunits. The HSV-1 UL30-UL42 interaction involves a groove to one side of the UL42 connector loop, with hydrophilic interactions being critical (58). The HCMV UL54-UL44 interaction involves a crevice near the UL44 connector loop, and hydrophobic interactions are crucial (2, 32, 33). Moreover, the HCMV UL44 crevice is on the opposite side of the connector loop with respect to the HSV-1 UL42 groove.Kaposi''s sarcoma-associated herpesvirus (KSHV), a gammaherpesvirus, encodes a viral DNA polymerase catalytic subunit, Pol-8, and an accessory subunit, PF-8 (4, 7, 8, 29, 48, 57). PF-8 can bind to Pol-8 directly and specifically (8, 29) and is required for long-chain DNA synthesis in vitro (29). Similarly to UL44, PF-8 forms dimers in solution and when bound to DNA (9). Although it is likely that UL44 and PF-8 are the processivity factors for HCMV and KSHV, respectively, rigorous experiments demonstrating this have not been performed. However, for the sake of brevity and clarity, we will refer to these proteins as processivity factors.Here we present the crystal structure of PF-8 and show that PF-8 forms a head-to-head homodimer akin to UL44 but lacking the long gap loops which are thought to wrap around DNA. This suggests that PF-8 binds DNA differently than does UL44 or UL42. Because Pol-8 appears to lack a long, flexible C-terminal tail with a length comparable to those of other herpesvirus Pols, we expect the mode of binding of the catalytic subunit to be different as well. Based on structural data, information from homologs, and initial biochemical results, we were able to identify possible sites for interactions with DNA and Pol-8 and to propose a model for the simultaneous interaction of all three components of the complex. Further, the availability of crystal structures for all three herpesvirus classes provides new insights into comparative structure, function, and evolution.  相似文献   
976.
977.
Transposable elements often accumulate in nonrecombining regions, such as Y chromosomes. Contrary to this trend, a new Silene retrotransposon described here, has spread recently all over the genome of plant Silene latifolia, except its Y chromosome. This coincided with the latest steps of sex chromosome evolution in this species.  相似文献   
978.
A small cluster of dioecious species in the plant genus Silene has evolved chromosomal sex determination and sex chromosomes relatively recently, within the last 10 million years (MY). Five dioecious Silene species (section Elisanthe) are very closely related (1–2 MY of divergence) and it was previously thought that all five have similar sex chromosomes. Here we demonstrate that in one of these species, Silene diclinis, the sex chromosomes have been significantly rearranged, resulting in the formation of neo-sex chromosomes. Fluorescence in situ hybridization with genic and repetitive probes revealed that in S. diclinis a reciprocal translocation has occurred between the ancestral Y chromosome and an autosome, resulting in chromosomes designated Y1 and Y2. Both Y1 and Y2 chromosomes are male specific. Y1 pairs with the X chromosome and with the autosome (the neo-X), which cosegregates with X. Y2 pairs only with the neo-X, forming a chain X-Y1-neo-X-Y2 in male meiosis. Despite very recent formation of the neo-sex chromosomes in S. diclinis, they are present in all surveyed individuals throughout the species range. Evolution of neo-sex chromosomes may be the cause of partial reproductive isolation of this species and could have been the isolating mechanism that drove speciation of S. diclinis.PAIRING of homologous chromosomes during meiosis, in the majority of diploid plants and animals, leads to the formation of bivalents at first metaphase and subsequently the correct segregation of the chromosomes. Chromosomal translocations that produce multivalents usually result in unbalanced segregation, which consequently affects fertility. However, chain or ring configurations appear to be stably inherited in some species. An extreme example is found in the plant genus Oenothera, where many species display a ring involving all 14 chromosomes (Cleland 1972). In animals these configurations may include sex chromosomes, resulting in the formation of multiple X and Y chromosomes. For example, the monotreme platypus possesses five X and five Y chromosomes that form a chain of alternating X and Y chromosomes in male meiosis (Bick and Sharman 1975; Gruetzner et al. 2006). Such chains are formed due to several interchromosomal translocation events, including sex chromosome–autosome translocations (Gruetzner et al. 2006). Since sex chromosomes are rare in plants, examples of plant sex-linked chromosome multiples have been reported on only a few occasions. A chain of four X and five Y has been identified in an East African mistletoe Viscum fischeri (Wiens and Barlow 1975) and a chain of two X and two Y has been found in Humulus lupulus ssp. cordifolius (Shephard et al. 2000). Trivalent formation comprising Y1 X Y2 has been observed both in H. japonicus (Shephard et al. 2000) and in a number of dioecious species in the genus Rumex (Cunado et al. 2007; Navajas-Perez et al. 2009). Here we report that the plant species Silene diclinis has multiple sex chromosomes that form a chain of four during meiosis metaphase I.S. diclinis is a member of a small group of dioecious species (having separate male and female plants) in section Elisanthe in the plant genus Silene (Caryophyllaceae). The other members of this group are S. latifolia, S. dioica, S. heuffelii, and S. marizii (Prentice 1978). The presence of large heteromorphic sex chromosomes in S. latifolia and S. dioica has been known for many years (Westergaard 1958). Due to the ease of cytogenetic identification of the sex chromosomes, the clear morphological difference between the sexes and the short generation time, S. latifolia was used in early genetic research concerning sex determination in plants. The male was shown to be the heterogametic sex (XY) with the larger Y chromosome having a decisive role in sex determination (Westergaard 1958). Since then, S. latifolia has become a species of choice for studies in plant genetics, ecology, and evolution (Bernasconi et al. 2009). It is particularly useful for studies of sex chromosome evolution because the sex chromosomes in Silene are of relatively recent origin compared to those of mammals (Charlesworth 2002; Ming and Moore 2007; Marais et al. 2008).Experimental crosses involving all five dioecious species in Silene section Elisanthe in various pairwise combinations have produced viable hybrids and, although some combinations were less successful than others, the formation of these hybrids suggests a close relationship within this group (Prentice 1978). This close relationship is also illustrated by DNA sequence comparisons that show that interspecific silent divergence between these species does not exceed 2%, which is comparable to intraspecific polymorphism in S. latifolia (Ironside and Filatov 2005). S. diclinis is a rare and restricted endemic, found only in Southern Valencia, Spain in an area smaller than 18 × 9 km (Prentice 1976; Montesinos et al. 2006). Of the other four Elisanthe species, only S. latifolia occurs in this region, and experimental crosses between these two species are the least successful (Prentice 1978). Hybrids between S. latifolia and S. dioica occur naturally in regions where their populations coincide (Baker 1948) but no natural hybrids of S. diclinis and S. latifolia have been reported.Cytogenetic analysis of S. diclinis has been limited. Examination of mitotic metaphase spreads in root tip squash preparations from adult male and female plants indicated that the male had one X and one Y chromosome. Both chromosomes were large but the difference between them was slight (van Nigtevecht and Prentice 1985). Regular pairing of chromosomes with 12 bivalents at metaphase I in pollen mother cells has been reported (Morisset and Bozman 1969). However, these observations were made without the benefit of a marker for the Y chromosome. Recently, sequences with homology to an Ogre retrotransposon have been isolated from S. latifolia and used as probes in fluorescence in situ hybridization (FISH) experiments on mitotic (Cermak et al. 2008) and both mitotic and meiotic (Filatov et al. 2009) chromosome spreads. The pattern of hybridization showed that these sequences are widespread over the X chromosome and all of the autosomes but are mainly confined to a small section at the pairing region of the Y chromosome in S. latifolia. Therefore, these probes “paint” all the chromosomes apart from the Y, providing a “negative paint” for the Y chromosome. By using one of these probes (clone 4.2) on meiotic spreads of S. dioica and S. marizii, we confirmed that these species have sex chromosomes similar to those of S. latifolia (Filatov et al. 2009). The X and Y formed a rod bivalent and the Y chromosome was larger than both the X and autosomes.In this article we report our FISH experiments with S. diclinis using the negative paint probe together with probes containing S. latifolia sex-linked gene sequences. We demonstrate that S. diclinis males have two Y chromosomes that differ in the distribution of the paint signal and these gene sequences. In meiotic metaphase I, one Y pairs with the X and an autosome while the second Y pairs with the other arm of this autosome, forming a chain of four chromosomes. We suggest that an autosome–Y reciprocal translocation was involved in the evolution of neo-sex chromosomes in this species.  相似文献   
979.
980.
In fishes, arsenic (As) is absorbed via the gills and is capable of causing disturbance to the antioxidant system. The objective of present study was to evaluate antioxidant responses after As exposure in gills of zebrafish (Danio rerio, Cyprinidae). Fish were exposed for 48 h to three concentration of As, including the highest As concentration allowed by current Brazilian legislation (10 μg As/L). A control group was exposed to tap water (pH 8.0; 26 °C; 7.20 mg O2/L). As exposure resulted in (1) an increase (p < 0.05) of glutathione (GSH) levels after exposure to 10 and 100 μg As/L, (2) an increase of the glutamate cysteine ligase (GCL) activity in the same concentrations (p < 0.05), (3) no significant differences in terms of glutathione reductase, glutathione-S-transferase and catalase activities; (4) a significantly lower (p < 0.05) oxygen consumption after exposure to 100 μg As/L; (4) no differences in terms of oxygen reactive species generation and lipid peroxidation content (p > 0,05). In the gills, only inorganic As was detected. Overall, it can be concluded that As affected the antioxidant responses increasing GCL activity and GSH levels, even at concentration considered safe by Brazilian legislation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号