首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   259篇
  免费   27篇
  2023年   2篇
  2022年   5篇
  2021年   8篇
  2020年   4篇
  2019年   5篇
  2018年   7篇
  2017年   6篇
  2016年   8篇
  2015年   12篇
  2014年   15篇
  2013年   21篇
  2012年   36篇
  2011年   23篇
  2010年   12篇
  2009年   13篇
  2008年   13篇
  2007年   17篇
  2006年   14篇
  2005年   6篇
  2004年   2篇
  2003年   1篇
  2002年   7篇
  2001年   1篇
  2000年   2篇
  1999年   6篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1993年   4篇
  1992年   4篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   2篇
  1967年   1篇
排序方式: 共有286条查询结果,搜索用时 15 毫秒
91.
Metabolic pathways may seem arbitrary and unnecessarily complex. In many cases, a chemist might devise a simpler route for the biochemical transformation, so why has nature chosen such complex solutions? In this review, we distill lessons from a century of metabolic research and introduce new observations suggesting that the intricate structure of metabolic pathways can be explained by a small set of biochemical principles. Using glycolysis as an example, we demonstrate how three key biochemical constraints--thermodynamic favorability, availability of enzymatic mechanisms and the physicochemical properties of pathway intermediates--eliminate otherwise plausible metabolic strategies. Considering these constraints, glycolysis contains no unnecessary steps and represents one of the very few pathway structures that meet cellular demands. The analysis presented here can be applied to metabolic engineering efforts for the rational design of pathways that produce a desired product while satisfying biochemical constraints.  相似文献   
92.
Salinity is a key abiotic property of inland waters; it has a major influence on biotic communities and is affected by many natural and anthropogenic processes. Salinity of inland waters tends to increase with aridity, and biota of inland waters may have evolved greater salt tolerance in more arid regions. Here we compare the sensitivity of stream macroinvertebrate species to salinity from a relatively wet region in France (Lorraine and Brittany) to that in three relatively arid regions eastern Australia (Victoria, Queensland and Tasmania), South Africa (south-east of the Eastern Cape Province) and Israel using the identical experimental method in all locations. The species whose salinity tolerance was tested, were somewhat more salt tolerant in eastern Australia and South Africa than France, with those in Israel being intermediate. However, by far the greatest source of variation in species sensitivity was between taxonomic groups (Order and Class) and not between the regions. We used a bayesian statistical model to estimate the species sensitivity distributions (SSDs) for salinity in eastern Australia and France adjusting for the assemblages of species in these regions. The assemblage in France was slightly more salinity sensitive than that in eastern Australia. We therefore suggest that regional salinity sensitivity is therefore likely to depend most on the taxonomic composition of respective macroinvertebrate assemblages. On this basis it would be possible to screen rivers globally for risk from salinisation.  相似文献   
93.
Thermodynamics impose a major constraint on the structure of metabolic pathways. Here, we use carbon fixation pathways to demonstrate how thermodynamics shape the structure of pathways and determine the cellular resources they consume. We analyze the energetic profile of prototypical reactions and show that each reaction type displays a characteristic change in Gibbs energy. Specifically, although carbon fixation pathways display a considerable structural variability, they are all energetically constrained by two types of reactions: carboxylation and carboxyl reduction. In fact, all adenosine triphosphate (ATP) molecules consumed by carbon fixation pathways - with a single exception - are used, directly or indirectly, to power one of these unfavorable reactions. When an indirect coupling is employed, the energy released by ATP hydrolysis is used to establish another chemical bond with high energy of hydrolysis, e.g. a thioester. This bond is cleaved by a downstream enzyme to energize an unfavorable reaction. Notably, many pathways exhibit reduced ATP requirement as they couple unfavorable carboxylation or carboxyl reduction reactions to exergonic reactions other than ATP hydrolysis. In the most extreme example, the reductive acetyl coenzyme A (acetyl-CoA) pathway bypasses almost all ATP-consuming reactions. On the other hand, the reductive pentose phosphate pathway appears to be the least ATP-efficient because it is the only carbon fixation pathway that invests ATP in metabolic aims other than carboxylation and carboxyl reduction. Altogether, our analysis indicates that basic thermodynamic considerations accurately predict the resource investment required to support a metabolic pathway and further identifies biochemical mechanisms that can decrease this requirement.  相似文献   
94.
The ever‐growing use of pharmaceutical compounds, including antibacterial substances, poses a substantial pollution load on the environment. Such compounds can compromise water quality, contaminate soils, livestock and crops, enhance resistance of microorganisms to antibiotic substances, and hamper human health. We report the construction of a novel panel of genetically engineered Escherichia coli reporter strains for the detection and classification of antibiotic substances. Each of these strains harbours a plasmid that carries a fusion of a selected gene promoter to bioluminescence (luxCDABE) reporter genes and an alternative tryptophan auxotrophy‐based non‐antibiotic selection system. The bioreporter panel was tested for sensitivity and responsiveness to diverse antibiotic substances by monitoring bioluminescence as a function of time and of antibiotic concentrations. All of the tested antibiotics were detected by the panel, which displayed different response patterns for each substance. These unique responses were analysed by several algorithms that enabled clustering the compounds according to their functional properties, and allowed the classification of unknown antibiotic substances with a high degree of accuracy and confidence.  相似文献   
95.
96.
97.
Mouse mammary tumor virus (MMTV) induces breast cancer with almost 100% efficiency in susceptible strains through insertional activation of protooncogenes, such as members of the wnt and fibroblast growth factor (fgf) families. We previously showed that expression of the MMTV envelope protein (Env) in normal immortalized mammary epithelial cells grown in three-dimensional cultures caused their morphological transformation, and that this phenotype depended on an immunoreceptor tyrosine-based activation motif (ITAM) present in Env and signaling through the Syk tyrosine kinase (E. Katz, M. H. Lareef, J. C. Rassa, S. M. Grande, L. B. King, J. Russo, S. R. Ross, and J. G. Monroe, J. Exp. Med. 201:431-439, 2005). Here, we examined the role of the Env protein in virus-induced mammary tumorigenesis in vivo. Similar to the effect seen in vitro, Env expression in the mammary glands of transgenic mice bearing either full-length wild-type provirus or only Env transgenes showed increased lobuloalveolar budding. Introduction of the ITAM mutation into the env of an infectious, replication-competent MMTV or into MMTV/murine leukemia virus pseudotypes had no effect on incorporation of Env into virus particles or on in vitro infectivity. Moreover, replication-competent MMTV bearing the ITAM mutation in Env infected lymphoid and mammary tissue at the same level as wild-type MMTV and was transmitted through milk. However, mammary tumor induction was greatly attenuated, and the pattern of oncogene activation was altered. Taken together, these studies indicate that the MMTV Env protein participates in mammary epithelial cell transformation in vivo and that this requires a functional ITAM in the envelope protein.  相似文献   
98.
Thirty-six phytohormone-affected mutants of Arabidopsis thaliana (L.) Heynh. and their parental ecotypes were tested for resistance/susceptibility to Botrytis cinerea Pers.; Fr. and ability to develop Trichoderma-mediated induced systemic resistance (ISR). Ecotype Colombia-0 (Col-0) was relatively resistant to B. cinerea, and Trichoderma harzianum Rifai T39 application at sites spatially separated (roots) from the B. cinerea inoculation (leaves) resulted in reduction of grey mold symptoms. Ecotypes Wassilewskija-4, Nossen-0 and Landsberg-0 had low levels of basal resistance to B. cinerea and were unable to express ISR. Mutants derived from ISR-non-inducible ecotypes displayed ISR-non-inducible phenotypes, whereas the ISR inducibility of mutants derived from the ISR-inducible genotype Col-0 varied according to the type of mutant. Thus, salicylic acid (SA)-impaired mutants derived from Col-0 were ISR-inducible, while ethylene/jasmonic acid (ethylene/JA)-impaired mutants of the same origin were ISR-non-inducible. SA-impaired mutants retained basal level of resistance to B. cinerea, while most ethylene/JA-impaired mutants were highly susceptible. Abscisic acid- and gibberellin-impaired mutants were highly susceptible to B. cinerea and showed ISR-non-inducible phenotypes irrespective of their lines of origin. Auxin-resistant mutants derived from Col-0 were ISR-inducible; mutant originating from Landsberg-0 and mutants which were resistant to both auxin and ethylene were ISR-non-inducible. Most of the arabidopsis genotypes which were unable to express Trichoderma-mediated ISR against B. cinerea exhibited enhanced susceptibility to this pathogen. T. harzianum treatments enhanced the growth of arabidopsis plants regardless of genotype or ISR inducibility.  相似文献   
99.
Microbial symbionts have come to be recognized as agents in the speciation of their eukaryote hosts. In this study, we asked if bacterial symbionts are, or were in the past, involved in the speciation of the gall-inducing aphid Slavum wertheimae (Hemiptera: Aphididae). This aphid is specific to the tree Pistacia atlantica, which has a fragmented distribution among mesic and xeric habitats, leading to corresponding fragmentation of the aphid population. Previous studies revealed genetic differentiation among populations of the gall-inducing aphid, suggesting cryptic allopatric speciation. Pistacia atlantica trees show no such variation. By means of diagnostic PCR, we screened several populations of S. wertheimae from mesic and xeric sites in Israel for the presence of nine known aphid symbionts: Arsenophonus, Hamiltonella, Regiella, Rickettsia, Rickettsiella, Serratia, Spiroplasma, Wolbachia, and X-type, as well as Cardinium, known to be a reproductive manipulator. Only one symbiont, Wolbachia, was detected in S. wertheimae. Wolbachia was found in all the aphids of the mesic populations, compared to 26% in the aphids from the xeric populations. Multilocus Sequence typing of Wolbachia revealed new haplotypes in the fbpA and coxA genes in both the mesic and xeric populations. Phylogenetic analysis showed that Wolbachia of S. wertheimae is closely related to Wolbachia strains from assorted hosts, mostly lepidopterans, but only distantly related to Wolbachia strains from other aphid species. We conclude that the cryptic speciation of mesic and xeric populations of S. wertheimae was likely driven by geographical isolation rather than by Wolbachia.  相似文献   
100.
The three human pathogenic ebolaviruses: Zaire (EBOV), Bundibugyo (BDBV), and Sudan (SUDV) virus, cause severe disease with high fatality rates. Epitopes of ebolavirus glycoprotein (GP) recognized by antibodies with binding breadth for all three ebolaviruses are of major interest for rational vaccine design. In particular, the heptad repeat 2 –membrane-proximal external region (HR2-MPER) epitope is relatively conserved between EBOV, BDBV, and SUDV GP and targeted by human broadly-neutralizing antibodies. To study whether this epitope can serve as an immunogen for the elicitation of broadly-reactive antibody responses, protein design in Rosetta was employed to transplant the HR2-MPER epitope identified from a co-crystal structure with the known broadly-reactive monoclonal antibody (mAb) BDBV223 onto smaller scaffold proteins. From computational analysis, selected immunogen designs were produced as recombinant proteins and functionally validated, leading to the identification of a sterile alpha motif (SAM) domain displaying the BDBV-HR2-MPER epitope near its C terminus as a promising candidate. The immunogen was fused to one component of a self-assembling, two-component nanoparticle and tested for immunogenicity in rabbits. Robust titers of cross-reactive serum antibodies to BDBV and EBOV GPs and moderate titers to SUDV GP were induced following immunization. To confirm the structural composition of the immunogens, solution NMR studies were conducted and revealed structural flexibility in the C-terminal residues of the epitope. Overall, our study represents the first report on an epitope-focused immunogen design based on the structurally challenging BDBV-HR2-MPER epitope.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号